Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38730920

RESUMEN

Membrane emulsification technology has garnered increasing interest in emulsion preparation due to controllable droplet size, narrower droplet size distribution, low energy consumption, simple process design and excellent reproducibility. Nevertheless, the pore structure and surface engineering in membrane materials design play a crucial role in achieving high-quality emulsions with high throughput simultaneously. In this work, an oriented interpenetrating capillary network composed of highly aligned and interconnected wood cell lumens has been utilized to fabricate an emulsion membrane. A novel honeycomb porous ZnO layer obtained by a seed prefabrication-hydrothermal growth method was designed to reconstruct wood channel surfaces for enhanced microfluid mixing. The results show that through the unique capillary mesh microstructure of wood, the emulsion droplets were smaller in size, had narrower pore-size distribution, and were easy to obtain under high throughput conditions. Meanwhile, a well-designed ZnO layer could further improve the emulsion quality of a wood membrane, while the emulsifying throughput is still maintained at a higher level. This demonstrates that the convection process of the microfluid in these wood capillary channels was intensified markedly. This study not only develops advanced membrane materials in emulsion preparation, but also introduces a brand-new field for functional applications of wood.

2.
Phys Chem Chem Phys ; 26(19): 14131-14139, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690682

RESUMEN

Cancer is one of the primary health concerns among humans due to its high incidence rate and lack of effective treatment. Currently, medical techniques to achieve the precise elimination of local cancer lesions with negligible damage to normal tissues are still intensely desired. Herein, we synthesized BaTiO3-TiO2 hollow spheres (BTHSs) for use in microwave dynamic therapy (MWDT) for cancer. Under UV irradiation, BTHSs can mediate the production of multiple reactive oxygen species (ROS), mainly 1O2, which results in a rapid photocatalytic degradation rate (97%), 1.6-fold that of commercial P25. Importantly, the ROS production process can be triggered by microwaves to effectively execute MWDT for cancer. Under microwave irradiation, BTHSs exhibit a remarkable therapeutic effect and slight cytotoxicity. In terms of mechanism, the enhanced ROS production efficiency of BTHSs can be attributed to their unique hollow structure and the formation of a type-II heterojunction by the incorporation of BaTiO3. The hollow structure increases the availability of active sites and enhances light scattering, while the BaTiO3-TiO2 heterojunction enhances the photocatalytic activity of TiO2 through charge transfer and electron-hole separation. Overall, this study provides important insights into the design and optimization of sensitizers for MWDT applications.


Asunto(s)
Compuestos de Bario , Microondas , Especies Reactivas de Oxígeno , Titanio , Titanio/química , Compuestos de Bario/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Neoplasias , Catálisis , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
3.
J Clin Ultrasound ; 52(1): 20-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37883130

RESUMEN

AIMS: Cardiac left ventricular hypertrophy (LVH) is the most common manifestation of heart involvement in Anderson-Fabry disease (AFD). Conventional cardiac imaging is not sensitive enough to detect early signs of LVH in AFD. It remains uncertain whether enzyme replacement therapy (ERT) can prevent LVH progression and improve myocardial function. This study aimed to assess the effectiveness of two-dimensional speckle tracking echocardiography (2D-STE) in early detection of cardiac involvement in AFD and monitoring the efficacy of agalsidase alfa and agalsidase beta therapy. METHODS AND RESULTS: Thirteen consecutive AFD patients and 12 healthy controls underwent standard transthoracic 2D, color Doppler, tissue Doppler echocardiography, and 2D strain analysis. Global longitudinal strain (GLS) and global circumferential strain (GCS) were measured. Diastolic strain rate (SR) was extracted. Compared to healthy subjects, AFD patients without LVH showed lower levels of GLS (p < 0.001) and SR (p = 0.01), while there was no difference in GCS (p = 0.82). Following treatment, apical circumferential strain (ACS) showed improvement (p = 0.01). CONCLUSION: In AFD patients without LVH, there was a decrease in global and segmental LS. Higher plasma Lyso-GL-3 concentrations were associated with elevated ACS values after ERT, indicating that ACS in AFD patients without LVH, albeit normal, is involved in early LV dysfunction.


Asunto(s)
Enfermedad de Fabry , Disfunción Ventricular Izquierda , Humanos , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/diagnóstico por imagen , Enfermedad de Fabry/tratamiento farmacológico , Terapia de Reemplazo Enzimático , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Ecocardiografía/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Disfunción Ventricular Izquierda/complicaciones , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/tratamiento farmacológico , Función Ventricular Izquierda
4.
Biomed Pharmacother ; 167: 115621, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37793278

RESUMEN

BACKGROUND: Oxidative stress and inflammatory responses are critical factors in calcium oxalate (CaOx) crystal-induced renal injury. Reactive oxygen species (ROS) are usually produced in the cytoplasm and mitochondria and trigger the priming and activation of the NLRP3 inflammasome, thereby regulating cytokines and inflammation. Polydatin is a plant rhizome extract with anti-inflammatory, antioxidant, and antitumor effects. However, it remains not clear whether and how these pathophysiological processes exists in CaOx crystal-induced renal inflammatory injury. METHODS: Here, we measured the expression of the NLRP3 inflammasome, IL-18, IL-1ß, intracellular and mitochondrial ROS (mtROS) levels and relevant morphological changes in treated renal tubular epithelial cells (TECs) and stone-forming rats. The study further explored the action of intracellular ROS and mtROS on these inflammatory damage, and the beneficial effects and pathway of polydatin. RESULTS: We verified that CaOx crystal-induced cytoplasmic ROS and mtROS upregulation promoted the priming and activation of the NLRP3 inflammasome, thereby stimulating IL-18/1ß maturation and activation. Polydatin can relieve oxidative stress and inflammatory damage by decreasing ROS. We further demonstrated that mtROS is the main target for polydatin to exert the NLRP3 inflammasome-regulating function. The inhibition of mtROS can effectively relieve the inflammatory damage to TECs and kidney caused by CaOx crystal. CONCLUSION: These findings provide new insight into the relationship between mitochondrial damage and inflammation in nephrolithiasis and show that polydatin-mediated anti-inflammatory and antioxidative protection is a therapeutic strategy for, but not limited to, crystalline nephropathy.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Inflamasomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Oxalato de Calcio/metabolismo , Interleucina-18/metabolismo , Riñón/patología , Mitocondrias , Antioxidantes/farmacología , Antioxidantes/metabolismo , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo
5.
FEBS J ; 290(20): 4921-4932, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37329190

RESUMEN

Assembly of cell division protein FtsZ into the Z-ring at the division site is a key step in bacterial cell division. The Min proteins can restrict the Z-ring to the middle of the cell. MinC is the main protein that obstructs Z-ring formation by inhibiting FtsZ assembly. Its N-terminal domain (MinCN ) regulates the localization of the Z-ring by inhibiting FtsZ polymerization, while its C-terminal domain (MinCC ) binds to MinD as well as to FtsZ. Previous studies have shown that MinC and MinD form copolymers in vitro. This copolymer may greatly enhance the binding of MinC to FtsZ, and/or prevent FtsZ filaments from diffusing to the ends of the cell. Here, we investigated the assembly properties of MinCC -MinD of Pseudomonas aeruginosa. We found that MinCC is sufficient to form the copolymers. Although MinCC -MinD assembles into larger bundles, most likely because MinCC is spatially more readily bound to MinD, its copolymerization has similar dynamic properties: the concentration of MinD dominates their copolymerization. The critical concentration of MinD is around 3 µm and when MinD concentration is high enough, a low concentration MinCC could still be copolymerized. We also found that MinCC -MinD can still rapidly bind to FtsZ protofilaments, providing direct evidence that MinCC also interacts directly with FtsZ. However, although the presence of minCC can slightly improve the division defect of minC-knockout strains and shorten the cell length from an average of 12.2 ± 6.7 to 6.6 ± 3.6 µm, it is still insufficient for the normal growth and division of bacteria.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Adenosina Trifosfatasas/metabolismo , División Celular , Proteínas de la Membrana/metabolismo
6.
Sci Rep ; 13(1): 7657, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169808

RESUMEN

Analysis of the changes of microorganisms during Chinese Feng-flavor Daqu fermentation, and the specific contribution of different environmental factors to Daqu microorganisms. High throughput sequencing technology and SourceTracker software were used to analyze the microbial diversity of Feng-flavor Daqu before and after fermentation. 85 fungal and 105 bacterial were detected in the newly pressed Feng-flavor Daqu, while 33 fungal and 50 bacterial in the mature Daqu, and 202 fungal and 555 bacterial in the environmental samples. After fermentation, the microbial community structure of Daqu changed and decreased significantly. 94.7% of fungi come from raw materials and 1.8% from outdoor ground, 60.95% of bacteria come from indoor ground, 20.44% from raw materials, and 8.98% from tools. By comparing the changes of microorganisms in Daqu before and after fermentation, the microorganisms in mature Daqu may mainly come from not only the enhanced strains but also the environment.The source of main microorganisms in Feng-flavor Daqu and the influence of environmental factors on the quality of Daqu were clarified, which provided a basis for improving the quality of Feng-flavor Daqu.


Asunto(s)
Bebidas Alcohólicas , Microbiota , Bebidas Alcohólicas/microbiología , Bacterias/genética , Fermentación
8.
Int J Oncol ; 62(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929198

RESUMEN

Lung cancer is the leading cause of cancer­related mortality worldwide. Non­small cell lung cancer (NSCLC) is the most common pathological subtype of lung cancer and is associated with low 5­year overall survival rates. Therefore, novel and effective chemotherapeutic drugs are urgently required for improving the survival outcomes of patients with lung cancer. Cyclovirobuxine D (CVB­D) is a natural steroidal alkaloid, used for the treatment of cardiovascular diseases in Traditional Chinese Medicine. Several studies have also demonstrated the antitumor effects of CVB­D. Therefore, in the present study, the therapeutic effects of CVB­D in lung cancer and the underlying mechanisms were investigated using the in vivo xenograft model of NSCLC in nude mice and in vitro experiments with the NSCLC cell lines. Bioinformatics analyses of RNA­sequencing data, and cell­based functional assays demonstrated that CVB­D treatment significantly inhibited in vitro and in vivo NSCLC cell proliferation, survival, invasion, migration, angiogenesis, epithelial­to­mesenchymal transition and G2/M phase cell cycle. CVB­D exerted its antitumor effects by inhibiting the KIF11­CDK1­CDC25C­cyclinB1 G2/M phase transition regulatory oncogenic network and the NF­κB/JNK signaling pathway. CVB­D treatment significantly reduced the sizes and weights and malignancy of xenograft NSCLC tumors in the nude mice. In conclusion, the present study demonstrated that CVB­D inhibited the growth and progression of NSCLC cells by inhibiting the KIF11­CDK1­CDC25C­CyclinB1 G2/M phase transition regulatory network and the NF­κB/JNK signaling pathway. Therefore, CVB­D is a promising drug for the treatment of NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Puntos de Control del Ciclo Celular , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Fosfatasas cdc25/metabolismo , División Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Cinesinas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Desnudos , FN-kappa B/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
9.
Front Microbiol ; 13: 841171, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495694

RESUMEN

Division site selection in rod-shaped bacteria is strictly regulated spatially by the Min system. Although many sophisticated studies, including in vitro recombination, have tried to explain these regulations, the precise mechanisms are still unclear. A previous model suggested that the concentration gradient of MinC, an FtsZ inhibitor, regulates the position of the Z-ring in the cell. In Escherichia coli, the oscillation of MinCDE proteins leads to a gradient of Min proteins with the average concentration being lowest in the middle and highest near the poles. In contrast to the Min system of E. coli, the Min system of Bacillus subtilis lacks MinE and exhibits a stable concentration distribution, which is regulated by the binding of DivIVA to the negative curvature membrane. The Min proteins first accumulate at the poles of the cell and relocalize near the division site when the membrane invagination begins. It is inconsistent with the previous model of high concentrations of MinC inhibiting Z-ring formation. Our preliminary data here using electron microscopy and light scattering technology reported that B. subtilis MinC (BsMinC) and MinD (BsMinD) also assembled into large straight copolymers in the presence of ATP, similar to the Min proteins of E. coli. Their assembly is fast and dominated by MinD concentration. When BsMinD is 5 µM, a clear light scattering signal can be observed even at 0.3 µM BsMinC. Here, we propose a new model based on the MinC-D copolymers. In our hypothesis, it is not the concentration gradient of MinC, but the MinC-D copolymer assembled in the region of high concentration MinD that plays a key role in the regulation of Z-ring positioning. In B. subtilis, the regions with high MinD concentration are initially at both ends of the cell and then appear at midcell when cell division began. MinC-D copolymer will polymerize and form a complex with MinJ and DivIVA. These complexes capture FtsZ protofilaments to prevent their diffusion away from the midcell and narrow the Z-ring in the middle of the cell.

10.
Traffic Inj Prev ; 23(5): 277-282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35442130

RESUMEN

OBJECTIVE: The objective of this study was to determine the different effects of the arrow-pointing augmented reality head-up display (AR-HUD) interface, virtual shadow AR-HUD interface, and non-AR-HUD interface on autonomous vehicle takeover efficiency and driver eye movement characteristics in different driving scenarios. METHODS: Thirty-six participants were selected to carry out a simulated driving experiment, and the eye movement index and takeover time were analyzed. RESULTS: The arrow pointing AR-HUD interface and the virtual shadow AR-HUD interface could effectively reduce the driver's visual distraction, improve the efficiency of obtaining visual information, reduce the number of times the driver's eyes leave the road, and improve the efficiency of the takeover compared with the non-AR-HUD interface, but there was no significant difference in eye movement indexes between the arrow pointing AR-HUD interface and the more eye-catching virtual shadow AR-HUD interface. When specific scenarios were considered, it was found that in the scenario of emergency braking of the vehicle in front, the arrow pointing AR-HUD interface and the virtual shadow AR-HUD interface had more advantages in takeover efficiency than the non-AR-HUD interface. However, in the scenarios of a rear vehicle overtaking the vehicle ahead and non-motor vehicles running red lights, there was no significant difference in takeover efficiency. For the non-motor vehicle invading the line, emergency U-turn of the vehicle in front, and pedestrian crossing scenarios, the virtual shadow AR-HUD interface had the highest takeover efficiency. CONCLUSIONS: These research results can help improve the active safety of autonomous vehicle AR-HUD interfaces.


Asunto(s)
Realidad Aumentada , Conducción de Automóvil , Peatones , Accidentes de Tránsito/prevención & control , Vehículos Autónomos , Humanos
11.
Appl Bionics Biomech ; 2022: 3300835, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355794

RESUMEN

Background: The upper limb neurodynamic test 1 (ULNT1) consists of a series of movements that are thought to detect an increase in neuromechanical sensitivity. In vivo, no trail was made to quantify the association between the nerve elasticity and different limb postures during ULNT1. Objectives: (1) To investigate the relationship between nerve elasticity and limb postures during ULNT1 and (2) to investigate the intra- and interoperator reliabilities of shear wave elastography (SWE) in quantifying the elasticity of median nerve. Methods: Twenty healthy subjects (mean age: 19.9 ± 1.4 years old) participated in this study. The median nerve was imaged during elbow extension in the following postures: (1) with neutral posture, (2) with wrist extension (WE), (3) with contralateral cervical flexion (CCF), and (4) with both WE and CCF. The intra- and interoperator reliabilities measured by two operators at NP and CCF+WE and intraclass correlation coefficients (ICCs) were calculated. Results: The intraoperator (ICC = 0.72-0.75) and interoperator (ICC = 0.89-0.94) reliabilities for measuring the elasticity of the median nerve ranged from good to excellent. The mean shear modulus of the median nerve increased by 53.68% from NP to WE+CCF. Conclusion: SWE is a reliable tool to quantify the elasticity of the median nerve. There was acute modulation in the elasticity of the median nerve during the ULNT1 when healthy participants reported substantial discomfort. Further studies need to focus on the elasticity properties of the median nerve in patients with peripheral neuropathic pain.

12.
Life Sci ; 293: 120358, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35092731

RESUMEN

AIMS: Glioblastoma (GBM) is the most common and aggressive intracranial tumor with poor prognosis. A large majority of clinical chemotherapeutic agents cannot achieve the desired therapeutic effect. Chelerythrine (CHE), a natural component with multitudinous pharmacological functions, has been proven to have outstanding antitumor effects in addition to antibacterial, anti-inflammatory, and hypotensive effects. However, the anti-GBM effect of CHE has not been reported to date. The purpose of this paper is to observe the anti-GBM effect of CHE and further explore the related mechanism. MATERIALS AND METHODS: GBM cell lines (U251 and T98G) and BALB/c nude mice were used in the experiments. Methyl thiazolyl tetrazolium (MTT) and clone formation assays were applied to detect the viability, proliferation and stemness of GBM cells. Flow cytometry was utilized to identify the effect of CHE on GBM apoptosis. Scratch and Transwell experiments reflected the migration and invasion of cells. In vivo, xenograft tumors were implanted subcutaneously in nude mice. The progression of tumors was assessed by ultrasound and magnetic resonance imaging. Finally, western blot, bioinformatics, and immunohistochemistry experiments were used to explore the molecular mechanisms in depth. KEY FINDINGS: In vitro tests showed that CHE inhibited the proliferation, stemness, migration, and invasion of GBM cells and induced apoptosis. In vitro, CHE was observed to restrain the progression of xenograft tumors. We eventually proved that the cytotoxicity of CHE was relevant to the TGFB1-ERK1/2/Smad2/3-Snail/ZEB1 signaling pathway. SIGNIFICANCE: CHE inhibited GBM progression by inhibiting the TGFB1-ERK1/2/Smad2/3-Snail/ZEB1 signaling pathway and is a potential chemotherapeutic drug for GBM.


Asunto(s)
Benzofenantridinas/farmacología , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Benzofenantridinas/uso terapéutico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína Smad2/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/antagonistas & inhibidores
14.
Chin J Nat Med ; 19(11): 815-824, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34844720

RESUMEN

Cervical cancer (CC) is recognized as the most common neoplasm in the female reproductive system worldwide. The lack of chemotherapeutic agents with outstanding effectiveness and safety severely compromises the anti-cipated prognosis of patients. Aloperine (ALO) is a natural quinolizidine alkaloid with marked anti-cancer effects on multiple malignancies as well as favorable activity in relieving inflammation, allergies and infection. However, its therapeutic efficacy and underlying mechanism in CC are still unclear. In the current study, MTT assay was employed to evaluate the viability of HeLa cells exposed to ALO to preliminarily estimate the effectiveness of ALO in CC. Then, the effects of ALO on the proliferation and apoptosis of HeLa cells were further investigated by plate colony formation and flow cytometry, respectively, while the migration and invasion of ALO-treated HeLa cells were evaluated using Transwell assay. Moreover, nude mice were subcutaneously inoculated with HeLa cells to demonstrate the anti-CC properties of ALO in vivo. The molecular mechanisms underlying these effects of ALO were evaluated by Western blot and immunohistochemical analysis. This study experimentally demonstrated that ALO inhibited the proliferation of HeLa cells via G2 phase cell cycle arrest. Simultaneously, ALO promoted an increase in the percentage of apoptotic HeLa cells by increasing the Bax/Bcl-2 ratio. Additionally, the migration and invasion of HeLa cells were attenuated by ALO treatment, which was considered to result from inhibition of epithelial-to-mesenchymal transition. For molecular mechanisms, the expression and activation of the IL-6-JAK1-STAT3 feedback loop were markedly suppressed by ALO treatment. This study indicated that ALO markedly suppresses the proliferation, migration and invasion and enhances the apoptosis of HeLa cells. In addition, these prominent anti-CC properties of ALO are associated with repression of the IL-6-JAK1-STAT3 feedback loop.


Asunto(s)
Quinolizidinas/farmacología , Neoplasias del Cuello Uterino , Animales , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Retroalimentación , Femenino , Células HeLa , Humanos , Interleucina-6/genética , Janus Quinasa 1/genética , Ratones , Ratones Desnudos , Factor de Transcripción STAT3/genética , Transducción de Señal , Neoplasias del Cuello Uterino/tratamiento farmacológico
15.
Ultrason Sonochem ; 81: 105849, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34839125

RESUMEN

Sonophotocatalysis is one of the most significant outcomes of the exploration of the interaction between piezoelectric field and charge carriers, which exhibits potential applications in dye degradation, water splitting, and sterilization. Although several heterojunction catalysts have been applied to improve the sonophotocatalytic capability, the importance of the morphology on the sonophotocatalytic capability has not been emphasized. In this study, brush-like ZnO nanorod arrays are synthesized on a stainless-steel mesh and subsequently vulcanized into ZnO/ZnS core-shell nanorod arrays to investigate the sonophotocatalytic capability of the heterojunction. The sonophotocatalytic capability increases from 25.1% to 45.4% through vulcanization. Afterward, the ZnO/ZnS nanorods are etched to ZnO/ZnS nanotubes without affecting the crystallography and distribution of the ZnS nanoparticle shell, further improving the capability to 63.3%. The improvement can be ascribed to the coupling effect of the enhanced piezoelectric field and the reduced migration distance, which suppresses the recombination of photoexcited electron-hole pairs while transforming the morphology from nanorod to nanotube, as proven by the electron spin resonance test and numerical simulations. This study explores a novel approach of morphology engineering for enhancing the sonophotocatalytic capability of heterojunction nanoarrays.

16.
Nano Converg ; 8(1): 29, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34606010

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world, and patients with HCC face a poor prognosis. The conventional therapeutic strategies for HCC have undergone a challenge-riddled evolution owing to side effects and unsatisfactory efficacy. Here, aiming to provide a new method of HCC elimination, we formulated a novel multifunctional nanocapsule (PFP@PLGA/Cu12Sb4S13, PPCu) with applications in contrast-enhanced ultrasound imaging (CEUS) and photothermal therapy (PTT). These PPCu were successfully constructed with an average diameter of 346 nm (polydispersity index, PDI = 0.276). The reinforced contrast ratio of these PPCu was determined by CEUS, revealing their promising applications in image-guided monitoring of HCC treatment. Furthermore, the excellent photoabsorption and biocompatibility indicated by organ H&E staining indicated that PPCu meet quality expectations for use as photothermal transduction agent (PTA). PPCu treatment at 50 °C and higher temperatures efficiently repressed the proliferation, induced the apoptosis and decreased the motility of HCC cells. These effects might have been results of RAS/MAPK/MT-CO1 signaling pathway inhibition. In summary, PPCu were constructed to integrate CEUS and PTT successfully into therapy, which can lead to HCC elimination through RAS/MAPK/MT-CO1 signaling pathway repression.

17.
Int J Biol Sci ; 17(13): 3522-3537, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512163

RESUMEN

Of all pathological types of renal cell cancer (RCC), clear cell renal cell carcinoma (ccRCC) has the highest incidence. Cyclovirobuxine (CVB), a triterpenoid alkaloid isolated from Buxus microphylla, exhibits antitumour activity against gastric cancer and breast cancer; however, the mechanism by which CVB inhibits ccRCC remains unclear. The aim of our study was to explore the antitumour effects of CVB on ccRCC and to elucidate its exact mechanism. Cell viability, proliferation, cell cycle distribution, apoptosis, wound healing and invasion were evaluated. Furthermore, Western blotting, immunofluorescence staining, immunohistochemical staining, and bioinformatics analyses were utilized to comprehensively probe the molecular mechanisms. The in vivo curative effect of CVB was explored using a 786-O xenograft model established in nude mice. CVB reduced cell viability, proliferation, angiogenesis, the epithelial-mesenchymal transition (EMT), migration and invasion. In addition, CVB induced cell cycle arrest in S phase and promoted apoptosis. The expression of the EMT-related transcription factor Snail was significantly downregulated by CVB via the inhibition of the AKT, STAT3 and MAPK pathways. We revealed that insulin-like growth factor binding protein 3 (IGFBP3) was the true therapeutic target of CVB. CVB exerted anti-ccRCC effects by blocking the IGFBP3-AKT/STAT3/MAPK-Snail pathway. Targeted inhibition of IGFBP3 with CVB treatment may become a promising therapeutic regimen for ccRCC.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Medicamentos Herbarios Chinos/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Neoplasias Renales/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Distribución Aleatoria , Factor de Transcripción STAT3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Front Microbiol ; 12: 717013, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421877

RESUMEN

Bacterial cell division is initiated by the assembly of the contraction ring (Z-ring), which consists of the self-assembled FtsZ protofilaments and dozens of other associate proteins. ZapA, a regulatory protein found in almost all bacteria, stabilizes FtsZ protofilaments to form bundles and enhances the Z-ring condensation. Here, we reported that another small protein from Pseudomonas aeruginosa, ZapA-Like protein (ZapAL; PA5407), is a new FtsZ associated protein. ZapAL exists in many Pseudomonas species and shares only 20% sequence identity to ZapA. ZapAL interacts with FtsZ and induces FtsZ to form long straight double filaments; in comparison, ZapA promotes long bundles with multiple FtsZ filaments. ZapAL has only a mild effect on GTPase activity of FtsZ, which is reduced by around 26% when 10 µM ZapAL is added in the solution. However, to study their assembly dynamics using light-scattering assay, we found that FtsZ-ZapAL double filament is stable and no depolymerization process is observed, which is different from ZapA. Further research found that ZapA and ZapL are likely to form heterodimers. The bundles formed by the mixture of FtsZ-ZapA-ZapAL will depolymerize after GTP is hydrolyzed. Consistent with ZapAL interaction with FtsZ in vitro, the expression of ZapAL-GFP was observed as a narrow band or spots in the middle of the cells, suggesting that it is a component of bacterial division machinery. Similar to ZapA, ZapAL is also not essential for bacterial cell division. Little changes were observed when zapAL gene was deleted, or overexpressed under normal conditions; however, overexpression of ZapAL caused zapA-deficient cells to grow approximately two times longer, showing a mild bacterial division defect. Although we still do not know the exact physiological roles of ZapAL, our results suggest that ZapAL is a novel Z-ring associate protein, which may work together with ZapA to stabilize the FtsZ protofilament and Z-ring structure.

19.
Neoplasma ; 68(5): 924-937, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33998239

RESUMEN

Homoharringtonine (HHT), was first isolated from the bark of Cephalotaxus harringtonia (Knight ex J. Forbes) K. Koch and Cephalotaxus fortunei Hook trees. The bark extract is used to treat leukemia and in recent years has also been used in traditional Chinese medicine (TCM) to treat solid tumors. However, the inhibitory mechanism of HHT in the progression of hepatocellular carcinoma (HCC) is rarely studied. We aimed to evaluate the antitumor efficacy of HHT on HCC in vitro and in vivo and elucidate the underlying molecular mechanism(s). HCC cell lines, including HCCLM3, HepG2, and Huh7, were used to evaluate the antitumor efficacy of HHT in vitro. Cytotoxicity and proliferative ability were evaluated by MTT and colony formation assays. Cell cycle progression and apoptosis in HHT-treated HCC cells were evaluated by flow cytometry. To determine the migration and invasion abilities of HCC cells, wound-healing and Transwell assays were used. Finally, western blot analysis was used to reveal the proteins involved. We also established a xenograft nude mouse model for in vivo assessments of the preclinical efficacy of HHT, mainly using hematoxylin and eosin staining, immunohistochemistry, ultrasound imaging (USI), and magnetic resonance imaging (MRI). HHT suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells, and induced cell cycle arrest at the G2 phase and apoptosis. In the HCC xenograft model, HHT showed an obvious tumor-suppressive effect. Surprisingly, Slug expression was also decreased by HHT via the PI3K/AKT/GSK3ß signaling pathway at least partially suppressed the growth of HCC via the PI3K/AKT/GSK3ß/Slug signaling pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Glucógeno Sintasa Quinasa 3 beta , Homoharringtonina , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Biol Chem ; 296: 100627, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33812992

RESUMEN

Bacterial cell and chloroplast division are driven by a contractile "Z ring" composed of the tubulin-like cytoskeletal GTPase FtsZ. Unlike bacterial Z rings, which consist of a single FtsZ, the chloroplast Z ring in plants is composed of two FtsZ proteins, FtsZ1 and FtsZ2. Both are required for chloroplast division in vivo, but their biochemical relationship is poorly understood. We used GTPase assays, light scattering, transmission electron microscopy, and sedimentation assays to investigate the assembly behavior of purified Arabidopsis thaliana (At) FtsZ1 and AtFtsZ2 both individually and together. Both proteins exhibited GTPase activity. AtFtsZ2 assembled relatively quickly, forming protofilament bundles that were exceptionally stable, as indicated by their sustained assembly and slow disassembly. AtFtsZ1 did not form detectable protofilaments on its own. When mixed with AtFtsZ2, AtFtsZ1 reduced the extent and rate of AtFtsZ2 assembly, consistent with its previously demonstrated ability to promote protofilament subunit turnover in living cells. Mixing the two FtsZ proteins did not increase the overall GTPase activity, indicating that the effect of AtFtsZ1 on AtFtsZ2 assembly was not due to a stimulation of GTPase activity. However, the GTPase activity of AtFtsZ1 was required to reduce AtFtsZ2 assembly. Truncated forms of AtFtsZ1 and AtFtsZ2 consisting of only their conserved core regions largely recapitulated the behaviors of the full-length proteins. Our in vitro findings provide evidence that FtsZ1 counterbalances the stability of FtsZ2 filaments in the regulation of chloroplast Z-ring dynamics and suggest that restraining FtsZ2 self-assembly is a critical function of FtsZ1 in chloroplasts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Citoesqueleto/metabolismo , GTP Fosfohidrolasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...