Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(10)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37893512

RESUMEN

Background and Objectives: Osteoprotegerin (OPG), a soluble glycoprotein found in serum, has been associated with both the presence and severity of atherosclerosis. OPG is regarded as the mediator in the process of vascular endothelial dysfunction. Impaired endothelial function has an intimate link with hypertension (HTN) and is associated with significant morbidity and mortality. This study was to investigate the connection between OPG and endothelial dysfunction in patients having HTN. Materials and Methods: There are 102 patients with HTN included. For the purpose of determining the levels of OPG, a commercial enzyme-linked immunosorbent test kit was applied. The vascular reactivity index (VRI), which is assessed via the digital thermal monitoring, provides information on endothelial function. Results: Ten patients with HTN (9.8%) were classified as having poor vascular reactivity (VRI < 1.0), 46 HTN patients (45.1%) as having intermediate vascular reactivity (1.0 ≤ VRI < 2.0), and 46 HTN patients (45.1%) were classified as having high vascular reactivity (VRI ≥ 2.0). A greater serum OPG level (p < 0.001) and older age (p = 0.022) were linked to impaired vascular reactivity. The estimated glomerular filtration rate (r = 0.196, p = 0.048) was positively correlated with VRI values in hypertensive participants, while advanced age (r = -0.222, p = 0.025) and the log-transformed OPG level (log-OPG, r = -0.357, p < 0.001) were negatively correlated with VRI. Serum log-OPG level was shown to be strongly and independently correlated with VRI values in HTN individuals after multivariable forward stepwise linear regression analysis (ß = -0.357, adjusted R2 change = 0.119, p < 0.001). Conclusions: In patients with HTN, serum OPG levels were adversely correlated with VRI and probably had a role in endothelial dysfunction.


Asunto(s)
Aterosclerosis , Hipertensión , Humanos , Osteoprotegerina , Hipertensión/complicaciones , Análisis de Regresión , Modelos Lineales , Biomarcadores
2.
Science ; 380(6652): 1349-1356, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37384702

RESUMEN

Millions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT. Cryo-electron microscopy approaches confirmed that CT compounds acted through selective, irreversible inhibition of trypanosomal topoisomerase II by stabilizing double-stranded DNA:enzyme cleavage complexes. These findings suggest a potential approach toward successful therapeutics for the treatment of Chagas disease.


Asunto(s)
Enfermedad de Chagas , Inhibidores de Topoisomerasa II , Triazoles , Trypanosoma , Tripanosomiasis Africana , Animales , Humanos , Ratones , Enfermedad de Chagas/tratamiento farmacológico , Microscopía por Crioelectrón , ADN-Topoisomerasas de Tipo II/metabolismo , Trypanosoma/efectos de los fármacos , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Triazoles/química , Triazoles/farmacología , Triazoles/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Evaluación Preclínica de Medicamentos
3.
J Med Chem ; 65(17): 11776-11787, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35993839

RESUMEN

Human African Trypanosomiasis (HAT) is a vector-borne disease caused by kinetoplastid parasites of the Trypanosoma genus. The disease proceeds in two stages, with a hemolymphatic blood stage and a meningo-encephalic brain stage. In the latter stage, the parasite causes irreversible damage to the brain leading to sleep cycle disruption and is fatal if untreated. An orally bioavailable treatment is highly desirable. In this study, we present a brain-penetrant, parasite-selective 20S proteasome inhibitor that was rapidly optimized from an HTS singleton hit to drug candidate compound 7 that showed cure in a stage II mouse efficacy model. Here, we describe hit expansion and lead optimization campaign guided by cryo-electron microscopy and an in silico model to predict the brain-to-plasma partition coefficient Kp as an important parameter to prioritize compounds for synthesis. The model combined with in vitro and in vivo experiments allowed us to advance compounds with favorable unbound brain-to-plasma ratios (Kp,uu) to cure a CNS disease such as HAT.


Asunto(s)
Quinolinas , Trypanosoma , Tripanosomiasis Africana , Animales , Microscopía por Crioelectrón , Modelos Animales de Enfermedad , Humanos , Ratones , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
4.
J Med Chem ; 65(5): 3798-3813, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35229610

RESUMEN

A series of 5-aryl-2-amino-imidazothiadiazole (ITD) derivatives were identified by a phenotype-based high-throughput screening using a blood stage Plasmodium falciparum (Pf) growth inhibition assay. A lead optimization program focused on improving antiplasmodium potency, selectivity against human kinases, and absorption, distribution, metabolism, excretion, and toxicity properties and extended pharmacological profiles culminated in the identification of INE963 (1), which demonstrates potent cellular activity against Pf 3D7 (EC50 = 0.006 µM) and achieves "artemisinin-like" kill kinetics in vitro with a parasite clearance time of <24 h. A single dose of 30 mg/kg is fully curative in the Pf-humanized severe combined immunodeficient mouse model. INE963 (1) also exhibits a high barrier to resistance in drug selection studies and a long half-life (T1/2) across species. These properties suggest the significant potential for INE963 (1) to provide a curative therapy for uncomplicated malaria with short dosing regimens. For these reasons, INE963 (1) was progressed through GLP toxicology studies and is now undergoing Ph1 clinical trials.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Malaria , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antagonistas del Ácido Fólico/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Ratones , Ratones SCID , Plasmodium falciparum
5.
Sci Transl Med ; 13(579)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536278

RESUMEN

Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.


Asunto(s)
Virus del Dengue , Dengue , Animales , Antivirales/uso terapéutico , Dengue/tratamiento farmacológico , Perros , Ratones , Modelos Animales , Ratas , Serogrupo
6.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32907977

RESUMEN

Dengue virus (DENV) NS5 RNA-dependent RNA polymerase (RdRp), an important drug target, synthesizes viral RNA and is essential for viral replication. While a number of allosteric inhibitors have been reported for hepatitis C virus RdRp, few have been described for DENV RdRp. Following a diverse compound screening campaign and a rigorous hit-to-lead flowchart combining biochemical and biophysical approaches, two DENV RdRp nonnucleoside inhibitors were identified and characterized. These inhibitors show low- to high-micromolar inhibition in DENV RNA polymerization and cell-based assays. X-ray crystallography reveals that they bind in the enzyme RNA template tunnel. One compound (NITD-434) induced an allosteric pocket at the junction of the fingers and palm subdomains by displacing residue V603 in motif B. Binding of another compound (NITD-640) ordered the fingers loop preceding the F motif, close to the RNA template entrance. Most of the amino acid residues that interacted with these compounds are highly conserved in flaviviruses. Both sites are important for polymerase de novo initiation and elongation activities and essential for viral replication. This work provides evidence that the RNA tunnel in DENV RdRp offers interesting target sites for inhibition.IMPORTANCE Dengue virus (DENV), an important arthropod-transmitted human pathogen that causes a spectrum of diseases, has spread dramatically worldwide in recent years. Despite extensive efforts, the only commercial vaccine does not provide adequate protection to naive individuals. DENV NS5 polymerase is a promising drug target, as exemplified by the development of successful commercial drugs against hepatitis C virus (HCV) polymerase and HIV-1 reverse transcriptase. High-throughput screening of compound libraries against this enzyme enabled the discovery of inhibitors that induced binding sites in the RNA template channel. Characterizations by biochemical, biophysical, and reverse genetics approaches provide a better understanding of the biological relevance of these allosteric sites and the way forward to design more-potent inhibitors.


Asunto(s)
Virus del Dengue/genética , Virus del Dengue/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Sitio Alostérico , Antivirales/farmacología , Sitios de Unión , Cristalografía por Rayos X , Dengue/virología , Transcriptasa Inversa del VIH , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , ARN Polimerasa Dependiente del ARN/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/genética , Replicón , Alineación de Secuencia , Análisis de Secuencia de Proteína , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
7.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32958712

RESUMEN

Monophosphate prodrug analogs of 2'-deoxy-2'-fluoro-2'-C-methylguanosine have been reported as potent inhibitors of hepatitis C virus (HCV) RNA-dependent RNA polymerase. These prodrugs also display potent anti-dengue virus activities in cellular assays although their prodrug moieties were designed to produce high levels of triphosphate in the liver. Since peripheral blood mononuclear cells (PBMCs) are among the major targets of dengue virus, different prodrug moieties were designed to effectively deliver 2'-deoxy-2'-fluoro-2'-C-methylguanosine monophosphate prodrugs and their corresponding triphosphates into PBMCs after oral administration. We identified a cyclic phosphoramidate, prodrug 17, demonstrating well-balanced anti-dengue virus cellular activity and in vitro stability profiles. We further determined the PBMC concentration of active triphosphate needed to inhibit virus replication by 50% (TP50). Compound 17 was assessed in an AG129 mouse model and demonstrated 1.6- and 2.2-log viremia reductions at 100 and 300 mg/kg twice a day (BID), respectively. At 100 mg/kg BID, the terminal triphosphate concentration in PBMCs exceeded the TP50 value, demonstrating TP50 as the target exposure for efficacy. In dogs, oral administration of compound 17 resulted in high PBMC triphosphate levels, exceeding the TP50 at 10 mg/kg. Unfortunately, 2-week dog toxicity studies at 30, 100, and 300 mg/kg/day showed that "no observed adverse effect level" (NOAEL) could not be achieved due to pulmonary inflammation and hemorrhage. The preclinical safety results suspended further development of compound 17. Nevertheless, present work has proven the concept that an efficacious monophosphate nucleoside prodrug could be developed for the potential treatment of dengue virus infection.


Asunto(s)
Dengue , Guanosina/análogos & derivados , Profármacos , Amidas , Animales , Antivirales/farmacología , Dengue/tratamiento farmacológico , Perros , Femenino , Hepacivirus , Leucocitos Mononucleares , Masculino , Ácidos Fosfóricos , Profármacos/farmacología , Profármacos/uso terapéutico
8.
Nat Microbiol ; 5(10): 1207-1216, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32661312

RESUMEN

The kinetochore is a macromolecular structure that assembles on the centromeres of chromosomes and provides the major attachment point for spindle microtubules during mitosis. In Trypanosoma brucei, the proteins that make up the kinetochore are highly divergent; the inner kinetochore comprises at least 20 distinct and essential proteins (KKT1-20) that include four protein kinases-CLK1 (also known as KKT10), CLK2 (also known as KKT19), KKT2 and KKT3. Here, we report the identification and characterization of the amidobenzimidazoles (AB) protein kinase inhibitors that show nanomolar potency against T. brucei bloodstream forms, Leishmania and Trypanosoma cruzi. We performed target deconvolution analysis using a selection of 29 T. brucei mutants that overexpress known essential protein kinases, and identified CLK1 as a primary target. Biochemical studies and the co-crystal structure of CLK1 in complex with AB1 show that the irreversible competitive inhibition of CLK1 is dependent on a Michael acceptor forming an irreversible bond with Cys 215 in the ATP-binding pocket, a residue that is not present in human CLK1, thereby providing selectivity. Chemical inhibition of CLK1 impairs inner kinetochore recruitment and compromises cell-cycle progression, leading to cell death. This research highlights a unique drug target for trypanosomatid parasitic protozoa and a new chemical tool for investigating the function of their divergent kinetochores.


Asunto(s)
Cinetocoros/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Biomarcadores , Ciclo Celular/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Inmunofenotipificación , Cinetocoros/química , Ratones , Conformación Molecular , Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Protozoarias/química , Relación Estructura-Actividad
9.
J Med Chem ; 63(19): 10773-10781, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32667203

RESUMEN

Visceral leishmaniasis is responsible for up to 30,000 deaths every year. Current treatments have shortcomings that include toxicity and variable efficacy across endemic regions. Previously, we reported the discovery of GNF6702, a selective inhibitor of the kinetoplastid proteasome, which cleared parasites in murine models of leishmaniasis, Chagas disease, and human African trypanosomiasis. Here, we describe the discovery and characterization of LXE408, a structurally related kinetoplastid-selective proteasome inhibitor currently in Phase 1 human clinical trials. Furthermore, we present high-resolution cryo-EM structures of the Leishmania tarentolae proteasome in complex with LXE408, which provides a compelling explanation for the noncompetitive mode of binding of this novel class of inhibitors of the kinetoplastid proteasome.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Leishmaniasis Visceral/tratamiento farmacológico , Oxazoles/química , Oxazoles/farmacología , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Animales , Antiprotozoarios/uso terapéutico , Perros , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/aislamiento & purificación , Leishmania major/efectos de los fármacos , Leishmania major/aislamiento & purificación , Leishmaniasis Visceral/parasitología , Hígado/parasitología , Macaca fascicularis , Ratones , Ratones Endogámicos BALB C , Oxazoles/uso terapéutico , Inhibidores de Proteasoma/uso terapéutico , Pirimidinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Triazoles/química
10.
Bioorg Med Chem Lett ; 28(13): 2324-2327, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29801997

RESUMEN

To identify a potent and selective nucleoside inhibitor of dengue virus RNA-dependent RNA polymerase, a series of 2'- and/or 4'-ribose sugar modified uridine nucleoside phosphoramidate prodrugs and their corresponding triphosphates were synthesized and evaluated. Replacement of 2'-OH with 2'-F led to be a poor substrate for both dengue virus and human mitochondrial RNA polymerases. Instead of 2'-fluorination, the introduction of fluorine at the ribose 4'-position was found not to affect the inhibition of the dengue virus polymerase with a reduction in uptake by mitochondrial RNA polymerase. 2'-C-ethynyl-4'-F-uridine phosphoramidate prodrug displayed potent anti-dengue virus activity in the primary human peripheral blood mononuclear cell-based assay with no significant cytotoxicity in human hepatocellular liver carcinoma cell lines and no mitochondrial toxicity in the cell-based assay using human prostate cancer cell lines.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Profármacos/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/farmacología , Antivirales/química , Antivirales/toxicidad , Virus del Dengue/enzimología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/toxicidad , Células Hep G2 , Humanos , Leucocitos Mononucleares/virología , Estructura Molecular , Sistema Mononuclear Fagocítico/virología , Profármacos/química , Profármacos/toxicidad , Relación Estructura-Actividad
11.
Psychiatry Res ; 261: 488-497, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29360054

RESUMEN

Using self-report to assess everyday memory in alcoholics presents challenges given the presence of both memory and metamemory deficits. Accordingly, evaluation of the reliability and validity of proxy ratings as well as the frequency of these memory lapses are of clinical importance. In the present study, 180 patient-proxy dyads completed the Prospective and Retrospective Memory Questionnaire (PRMQ). 31.7% of proxy-rated versus 2.8% of patient-rated prospective memory scores fell in the impaired to below average range. 15% of proxy-rated retrospective memory scores were below average, whereas none of the patients reported problems in this regard. Longer delays between intention formation and action yielded better prospective memory performance, while the opposite was true for retrospective memory. Agreement between patients and proxies was generally poor to fair across severity levels and the magnitude of observed differences was large (standardized response mean > 0.8). For all PRMQ items, exact agreement occurred in 45.3% of the cases. Larger patient-proxy discrepancy was associated with older age, less education and greater disease severity. Proxy ratings were internally consistent, significantly correlated with objective memory performance, and were sensitive to differences in overall PRMQ performance between severity groups. Caution should be used in the interpretations of patients' reports.


Asunto(s)
Alcoholismo/psicología , Trastornos de la Memoria/psicología , Memoria Episódica , Apoderado/psicología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Factores de Tiempo , Adulto Joven
12.
J Med Syst ; 41(12): 198, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29098428

RESUMEN

Hospitals have become increasingly aware that electronic medical records (EMR) may bring about tangible/intangible benefits to managing institutions, including reduced medical errors, improved quality-of-care, curtailed costs, and allowed access to patient information by healthcare professionals regardless of limitations. However, increased dependence on EMR has led to a corresponding increase in the influence of EMR breaches. Such incursions, which have been significantly facilitated by the introduction of mobile devices for accessing EMR, may induce tangible/intangible damage to both hospitals and concerned individuals. The purpose of this study was to explore factors which may tend to inhibit nurses' intentions to violate privacy policy concerning EMR based upon the deterrence theory perspective. Utilizing survey methodology, 262 responses were analyzed via structural equation modeling. Results revealed that punishment certainty, detection certainty, and subjective norm would most certainly and significantly reduce nurses' intentions to violate established EMR privacy policy. With these findings, recommendations for health administrators in planning and designing effective strategies which may potentially inhibit nurses from violating EMR privacy policy are discussed.


Asunto(s)
Actitud del Personal de Salud , Confidencialidad/normas , Registros Electrónicos de Salud/normas , Enfermeras y Enfermeros/psicología , Seguridad Computacional , Humanos , Medición de Riesgo , Normas Sociales
13.
Antiviral Res ; 130: 46-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27016316

RESUMEN

There are currently no antiviral therapies available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). In this brief study, we describe the in vitro antiviral activity of adenosine analog NITD008 against KFDV, AHFV, OHFV, as well as Tick-borne Encephalitis virus (TBEV). Alongside the well-established activity of NITD008 against mosquito-borne flaviviruses, our results have demonstrated the feasibility of identifying nucleoside analog inhibitors that have pan-flavivirus activity.


Asunto(s)
Adenosina/análogos & derivados , Antivirales/farmacología , Flavivirus/efectos de los fármacos , Adenosina/farmacología , Línea Celular , Células Cultivadas , Efecto Citopatogénico Viral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología , Humanos , Enfermedades por Picaduras de Garrapatas , Replicación Viral/efectos de los fármacos
14.
Antiviral Res ; 122: 12-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26241002

RESUMEN

Nucleoside analogs represent the largest class of antiviral agents and have been actively pursued for potential therapy of dengue virus (DENV) infection. Early success in the treatment of human immunodeficiency virus (HIV) infection and the recent approval of sofosbuvir for chronic hepatitis C have provided proof of concept for this class of compounds in clinics. Here we review (i) nucleoside analogs with known anti-DENV activity; (ii) challenges of the nucleoside antiviral approach for dengue; and (iii) potential strategies to overcome these challenges. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Nucleósidos/farmacología , Nucleótidos/farmacología , Antivirales/química , Antivirales/metabolismo , Dengue/virología , Virus del Dengue/metabolismo , Descubrimiento de Drogas , Humanos , Nucleósidos/química , Nucleótidos/química , Replicación Viral/efectos de los fármacos
15.
Antimicrob Agents Chemother ; 59(4): 2086-93, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25624323

RESUMEN

Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen in humans. Currently, there is no clinically approved vaccine or antiviral for DENV. Combination therapy is a common practice in antiviral treatment and a potential approach to search for new treatments for infectious pathogens. In this study, we performed a combination treatment in cell culture by using three distinct classes of inhibitors, including ribavirin (a guanosine analog with several antiviral mechanisms), brequinar (a pyrimidine biosynthesis inhibitor), and INX-08189 (a guanosine analog). The compound pairs were evaluated for antiviral activity by use of a DENV-2 luciferase replicon assay. Our result indicated that the combination of ribavirin and INX-08189 exhibited strong antiviral synergy. This result suggests that synergy can be achieved with compound pairs in which one compound suppresses the synthesis of the nucleoside for which the other compound is a corresponding nucleoside analog. In addition, we found that treatment of cells with brequinar alone could activate interferon-stimulated response elements (ISREs); furthermore, brequinar and NITD-982 (another pyrimidine biosynthesis inhibitor) potentiated interferon-induced ISRE activation. Compared to treatment with brequinar, treatment of cells with ribavirin alone could also induce ISRE activation, but to a lesser extent; however, when cells were cotreated with ribavirin and beta interferon, ribavirin did not augment the interferon-induced ISRE activation.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Nucleósidos/antagonistas & inhibidores , Nucleósidos/farmacología , Replicación Viral/efectos de los fármacos , Línea Celular , Combinación de Medicamentos , Sinergismo Farmacológico , Células HEK293 , Humanos , Inductores de Interferón/farmacología , Interferón beta/farmacología , Nucleósidos/biosíntesis , Oxidorreductasas/antagonistas & inhibidores , Ribavirina/farmacología
16.
J Formos Med Assoc ; 114(8): 704-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23856344

RESUMEN

BACKGROUND/PURPOSE: In terms of fracture mechanics, a precrack preparation may facilitate the propagation of a break through the expected fracture plane during the bracket debonding process. The purpose of this study was to evaluate the effect of an ultrasonic precrack preparation on the debonding force and failure modes of ceramic bracket removal. METHODS: Eighty extracted premolars were assigned to four groups: Inspire, precrack Inspire, Clarity, and precrack Clarity groups, with each group containing 20 teeth. The precrack preparations were made at the mesial gingival line angle of Inspire brackets and on the mesial side of Clarity brackets with an ultrasonic tip. Debonding force, failure modes, and bracket breakage score were measured and recorded. Fracture surfaces after bracket debonding were observed with scanning electron microscopy (SEM). RESULTS: We found that the ultrasonic precrack preparation could significantly decrease the average debonding force and the mean bracket breakage scores of both kinds of ceramic brackets. After bracket debonding, 80% of brackets in the precrack Inspire group and 100% of brackets in the precrack Clarity group showed no bracket failure. However, only 25% of brackets in the Inspire group and 75% of brackets in the Clarity group showed no bracket failure. SEM micrographs showed a precrack notch at the adhesive resin after precrack preparation, and no enamel damage was noted after the bracket debonding. CONCLUSION: The ultrasonic precrack preparation can significantly decrease the debonding force and may guide the bracket debonding through a favorable fracture plane without damage to either the bracket or the enamel.


Asunto(s)
Diente Premolar/diagnóstico por imagen , Desconsolidación Dental/instrumentación , Soportes Ortodóncicos , Terapia por Ultrasonido/métodos , Cerámica , Esmalte Dental , Análisis del Estrés Dental , Falla de Equipo , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo
17.
PLoS One ; 9(3): e92362, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24658174

RESUMEN

A novel chitosan-γPGA polyelectrolyte complex hydrogel (C-PGA) has been developed and proven to be an effective dressing for wound healing. The purpose of this study was to evaluate if C-PGA could promote new bone formation in the alveolar socket following tooth extraction. An animal model was proposed using radiography and histomorphology simultaneously to analyze the symmetrical sections of Wistar rats. The upper incisors of Wistar rats were extracted and the extraction sockets were randomly treated with gelatin sponge, neat chitosan, C-PGA, or received no treatment. The extraction sockets of selected rats from each group were evaluated at 1, 2, 4, or 6 wk post-extraction. The results of radiography and histopathology indicated that the extraction sockets treated with C-PGA exhibited lamellar bone formation (6.5%) as early as 2 wk after the extraction was performed. Moreover, the degree of new bone formation was significantly higher (P < 0.05) in the extraction sockets treated with C-PGA at 6 wk post-extraction than that in the other study groups. In this study, we demonstrated that the proposed animal model involving symmetrical sections and simultaneous radiography and histomorphology evaluation is feasible. We also conclude that the novel C-PGA has great potential for new bone formation in the alveolar socket following tooth extraction.


Asunto(s)
Quitosano/análogos & derivados , Osteogénesis/efectos de los fármacos , Ácido Poliglutámico/análogos & derivados , Proceso Alveolar/diagnóstico por imagen , Proceso Alveolar/patología , Animales , Quitosano/farmacología , Quitosano/uso terapéutico , Masculino , Ácido Poliglutámico/uso terapéutico , Radiografía , Ratas Wistar , Extracción Dental , Cicatrización de Heridas/efectos de los fármacos
18.
J Virol ; 88(3): 1740-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24257621

RESUMEN

In a recent clinical trial, balapiravir, a prodrug of a cytidine analog (R1479), failed to achieve efficacy (reducing viremia after treatment) in dengue patients, although the plasma trough concentration of R1479 remained above the 50% effective concentration (EC(50)). Here, we report experimental evidence to explain the discrepancy between the in vitro and in vivo results and its implication for drug development. R1479 lost its potency by 125-fold when balapiravir was used to treat primary human peripheral blood mononuclear cells (PBMCs; one of the major cells targeted for viral replication) that were preinfected with dengue virus. The elevated EC(50) was greater than the plasma trough concentration of R1479 observed in dengue patients treated with balapiravir and could possibly explain the efficacy failure. Mechanistically, dengue virus infection triggered PBMCs to generate cytokines, which decreased their efficiency of conversion of R1479 to its triphosphate form (the active antiviral ingredient), resulting in decreased antiviral potency. In contrast to the cytidine-based compound R1479, the potency of an adenosine-based inhibitor of dengue virus (NITD008) was much less affected. Taken together, our results demonstrate that viral infection in patients before treatment could significantly affect the conversion of the prodrug to its active form; such an effect should be calculated when estimating the dose efficacious for humans.


Asunto(s)
Antivirales/administración & dosificación , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Dengue/virología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Nucleósidos/administración & dosificación , Animales , Citidina/administración & dosificación , Citidina/análogos & derivados , Citocinas/inmunología , Dengue/inmunología , Virus del Dengue/genética , Virus del Dengue/fisiología , Femenino , Humanos , Ratones , Nucleósidos/farmacología , Profármacos/administración & dosificación
19.
J Virol Methods ; 196: 18-24, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24140514

RESUMEN

Dengue fever is the most important arthropod-transmitted viral disease affecting humans. It is a blood-borne disease characterized by persistent fever and joint pain. In the blood, primary peripheral blood mononuclear cells (PBMCs), in particular monocytes, are the main target of the dengue virus (DENV). These cells are poorly permissive for in vitro dengue virus infection and their infectivity varies from donor to donor. To overcome this barrier, an anti-dengue antibody was used to improve the infectivity of DENV-2 clinical isolates to PBMCs, the monocytic leukemia cell line, THP-1 and the granulocyte cell line, KU812. A higher throughput 96-well-format assay based on a fluorescent-activated cell sorter could potentially be developed to evaluate the antiviral potency of compounds in DENV-infected PBMCs in vitro. The results correlate well with data obtained by a standard plaque assay. Altogether, an assay has been developed that enables evaluation of the antiviral activity of test compounds in a physiologically-relevant cell system (PBMCs). These screening processes are urgently needed for dengue drug discovery.


Asunto(s)
Antivirales/aislamiento & purificación , Virus del Dengue/efectos de los fármacos , Dengue/virología , Evaluación Preclínica de Medicamentos/métodos , Citometría de Flujo/métodos , Granulocitos/virología , Monocitos/virología , Antivirales/farmacología , Línea Celular , Humanos
20.
Antiviral Res ; 100(2): 500-19, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24076358

RESUMEN

To combat neglected diseases, the Novartis Institute of Tropical Diseases (NITD) was founded in 2002 through private-public funding from Novartis and the Singapore Economic Development Board. One of NITD's missions is to develop antivirals for dengue virus (DENV), the most prevalent mosquito-borne viral pathogen. Neither vaccine nor antiviral is currently available for DENV. Here we review the progress in dengue drug discovery made at NITD as well as the major discoveries made by academia and other companies. Four strategies have been pursued to identify inhibitors of DENV through targeting both viral and host proteins: (i) HTS (high-throughput screening) using virus replication assays; (ii) HTS using viral enzyme assays; (iii) structure-based in silico docking and rational design; (iv) repurposing hepatitis C virus inhibitors for DENV. Along the developmental process from hit finding to clinical candidate, many inhibitors did not advance beyond the stage of hit-to-lead optimization, due to their poor selectivity, physiochemical or pharmacokinetic properties. Only a few compounds showed efficacy in the AG129 DENV mouse model. Two nucleoside analogs, NITD-008 and Balapiravir, entered preclinical animal safety study and clinic trial, but both were terminated due to toxicity and lack of potency, respectively. Celgosivir, a host alpha-glucosidase inhibitor, is currently under clinical trial; its clinical efficacy remains to be determined. The knowledge accumulated during the past decade has provided a better rationale for ongoing dengue drug discovery. Though challenging, we are optimistic that this continuous, concerted effort will lead to an effective dengue therapy.


Asunto(s)
Antivirales/aislamiento & purificación , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Dengue/virología , Descubrimiento de Drogas/historia , Descubrimiento de Drogas/tendencias , Historia del Siglo XXI , Humanos , Singapur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...