Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Org Lett ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836549

RESUMEN

A highly ortho-selective CAr-H olefination of tertiary anilines without a directing group was developed. This reaction tolerated various substituted arenes and olefin coupling partners, affording ortho-olefination products in moderate to good yields. Preliminary mechanistic studies showed that N-Ac-d-Ala, Ag2CO3, and BQ were the key factors for tuning the regioselectivity from para to ortho. Density functional theory was used to achieve a theoretical understanding of the ortho selectivity.

2.
J Phys Chem B ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830814

RESUMEN

Hydrogen sulfide (H2S) is an important endogenous gas transmitter that plays a critical role in various physiological and pathological processes and can also cause a negative impact on foodstuffs. In this study, we designed and synthesized a simple, easily available, high-yield, and low-cost near-infrared (λem = 710 nm) fluorescent probe, DEM-H2S, with a substantial Stokes shift (205 nm) for the detection of H2S. DEM-H2S features high selectivity and sensitivity (LOD = 80 nM) toward H2S, accompanied by a noticeable color change. Upon interaction with H2S, DEM-H2S exhibits a restored ICT (Intramolecular Charge Transfer) process, thereby manifesting near-infrared fluorescence. DEM-H2S has been successfully utilized to detect H2S in actual water samples and to monitor the spoilage of food items, such as pork, shrimp, and eggs. Furthermore, DEM-H2S enables the imaging of endogenous and exogenous H2S in living MCF-7 cells and zebrafish. Hence, DEM-H2S provides an attractive method for the detection of H2S in environmental, food, and biological systems, holding potential value in physiological and pathological research.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38708522

RESUMEN

Deficiencies in mice and in humans have brought to the fore the importance of the caveolar network in key aspects of adipocyte biology. The conserved N-terminal caveolin-binding motif (CBM) of the ubiquitous Na/K-ATPase (NKA) α1 isoform, which allows NKA/caveolin-1 (Cav1) interaction, influences NKA signaling and caveolar distribution. It has been shown to be critical for animal development and ontogenesis, as well as lineage-specific differentiation of human induced pluripotent stem cells (hiPSC). However, its role in postnatal adipogenesis has not been fully examined. Using a genetic approach to alter CBM in hiPSC-derived adipocytes (iAdi-mCBM) and in mice (mCBM), we investigated the regulatory function of NKA CBM signaling in adipogenesis. Seahorse XF cell metabolism analyses revealed impaired glycolysis and decreased ATP synthesis-coupled respiration in iAdi-mCBM. These metabolic dysfunctions were accompanied by evidence of extensive remodeling of the extracellular matrix (ECM), including increased collagen staining, overexpression of ECM marker genes, and heightened TGF-ß signaling uncovered by RNAseq analysis. Rescue of mCBM by lentiviral delivery of WT NKA α1 or treatment of mCBM hiPSC with the TGF-ß inhibitor SB431542 normalized ECM, suggesting that NKA CBM signaling integrity is required for adequate control of TGF-ß signaling and ECM stiffness during adipogenesis. The physiological impact was revealed in mCBM male mice with reduced fat mass accompanied by histological and transcriptional evidence of elevated adipose fibrosis and decreased adipocyte size. Based on these findings, we propose that the genetic alteration of the NKA/Cav1 regulatory path uncovered in human iAdi leads to lipodystrophy in mice.

4.
J Agric Food Chem ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807027

RESUMEN

Plant pathogenic fungi pose a significant threat to agricultural production, necessitating the development of new and more effective fungicides. The ring replacement strategy has emerged as a highly successful approach in molecular design. In this study, we employed the ring replacement strategy to successfully design and synthesize 32 novel hydrazide derivatives containing diverse heterocycles, such as thiazole, isoxazole, pyrazole, thiadiazole, 1,3,4-oxadiazole, 1,2,4-oxadiazole, thiophene, pyridine, and pyrazine. Their antifungal activities were evaluated in vitro and in vivo. Bioassay results revealed that most of the title compounds displayed remarkable antifungal activities in vitro against four tested phytopathogenic fungi, including Fusarium graminearum, Botrytis cinerea, Sclerotinia sclerotiorum, and Rhizoctonia solani. Especially, compound 5aa displayed a broad spectrum of antifungal activity against F. graminearum, B. cinerea, S. sclerotiorum, and R. solani, with the corresponding EC50 values of 0.12, 4.48, 0.33, and 0.15 µg/mL, respectively. In the antifungal growth assay, compound 5aa displayed a protection efficacy of 75.5% against Fusarium head blight (FHB) at a concentration of 200 µg/mL. In another in vivo antifungal activity evaluation, compound 5aa exhibited a noteworthy protective efficacy of 92.0% against rape Sclerotinia rot (RSR) at a concentration of 100 µg/mL, which was comparable to the positive control tebuconazole (97.5%). The existing results suggest that compound 5aa has a broad-spectrum antifungal activity. Electron microscopy observations showed that compound 5aa might cause mycelial abnormalities and organelle damage in F. graminearum. Moreover, in the in vitro enzyme assay, we found that the target compounds 5aa, 5ab, and 5ca displayed significant inhibitory effects toward succinate dehydrogenase, with the corresponding IC50 values of 1.62, 1.74, and 1.96 µM, respectively, which were superior to that of boscalid (IC50 = 2.38 µM). Additionally, molecular docking and molecular dynamics simulation results revealed that compounds 5aa, 5ab, and 5ca have the capacity to bind in the active pocket of succinate dehydrogenase (SDH), establishing hydrogen-bonding interactions with neighboring amino acid residues.

5.
J Environ Manage ; 359: 120938, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669888

RESUMEN

The effective purification of phosphate-containing wastewater is considered as increasingly important. In this study, a highly effective LC-CNT film was developed for efficient phosphate removal. Kinetic results showed that the adsorbent exhibited an improved mass transfer efficiency and a fast adsorption rate during adsorption (reaching 80% and 100% equilibrium adsorption capacity within 175 and 270 min, respectively). Kinetic model analysis suggested that the adsorption was a combined chemical physical process. Isotherm study revealed that the LC-CNT film showed a superior adsorption capacity (178.6 mg/g, estimated from the Langmuir model) with multiple adsorption mechanisms. pH study suggested that surface complexation and ligand exchange played important roles during adsorption, and the adsorbent worked well within the pH range of 3-7 with little La leakage. The ionic strength and competing anions showed little influence on the adsorbent effectiveness except for the carbonate and sulfate ions. The characterization and mechanism study revealed that the phosphate adsorption of the LC-CNT film was controlled by inner-sphere complexation, outer-sphere complexation and surface precipitation. The LC-CNT film also showed excellent regenerability and stability in cycling runs, further demonstrating its potential in industrial applications.


Asunto(s)
Lantano , Nanotubos de Carbono , Fosfatos , Contaminantes Químicos del Agua , Fosfatos/química , Lantano/química , Adsorción , Nanotubos de Carbono/química , Cinética , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Aguas Residuales/química , Concentración de Iones de Hidrógeno , Concentración Osmolar
6.
Trends Pharmacol Sci ; 45(4): 290-303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458847

RESUMEN

Accumulating evidence highlights the pivotal role of mitochondria in cardiovascular diseases (CVDs). Understanding the molecular mechanisms underlying mitochondrial dysfunction is crucial for developing targeted therapeutics. Recent years have seen substantial advancements in unraveling mitochondrial regulatory pathways in both normal and pathological states and the development of potent drugs. However, specific delivery of drugs into the mitochondria is still a challenge. We present recent findings on regulators of mitochondrial dynamics and reactive oxygen species (ROS), critical factors influencing mitochondrial function in CVDs. We also discuss advancements in drug delivery strategies aimed at overcoming the technical barrier in targeting mitochondria for CVD treatment.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Dinámicas Mitocondriales , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción
7.
Cell Mol Life Sci ; 81(1): 23, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200266

RESUMEN

The functional and structural changes in the proximal tubule play an important role in the occurrence and development of diabetic kidney disease (DKD). Diabetes-induced metabolic changes, including lipid metabolism reprogramming, are reported to lead to changes in the state of tubular epithelial cells (TECs), and among all the disturbances in metabolism, mitochondria serve as central regulators. Mitochondrial dysfunction, accompanied by increased production of mitochondrial reactive oxygen species (mtROS), is considered one of the primary factors causing diabetic tubular injury. Most studies have discussed how altered metabolic flux drives mitochondrial oxidative stress during DKD. In the present study, we focused on targeting mitochondrial damage as an upstream factor in metabolic abnormalities under diabetic conditions in TECs. Using SS31, a tetrapeptide that protects the mitochondrial cristae structure, we demonstrated that mitochondrial oxidative damage contributes to TEC injury and lipid peroxidation caused by lipid accumulation. Mitochondria protected using SS31 significantly reversed the decreased expression of key enzymes and regulators of fatty acid oxidation (FAO), but had no obvious effect on major glucose metabolic rate-limiting enzymes. Mitochondrial oxidative stress facilitated renal Sphingosine-1-phosphate (S1P) deposition and SS31 limited the elevated Acer1, S1pr1 and SPHK1 activity, and the decreased Spns2 expression. These data suggest a role of mitochondrial oxidative damage in unbalanced lipid metabolism, including lipid droplet (LD) formulation, lipid peroxidation, and impaired FAO and sphingolipid homeostasis in DKD. An in vitro study demonstrated that high glucose drove elevated expression of cytosolic phospholipase A2 (cPLA2), which, in turn, was responsible for the altered lipid metabolism, including LD generation and S1P accumulation, in HK-2 cells. A mitochondria-targeted antioxidant inhibited the activation of cPLA2f isoforms. Taken together, these findings identify mechanistic links between mitochondrial oxidative metabolism and reprogrammed lipid metabolism in diabetic TECs, and provide further evidence for the nephroprotective effects of SS31 via influencing metabolic pathways.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Metabolismo de los Lípidos , Mitocondrias , Estrés Oxidativo , Células Epiteliales , Glucosa , Lípidos
8.
IEEE Trans Biomed Eng ; 71(3): 831-840, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37756181

RESUMEN

A fully-sampled two-dimensional (2D) matrix array ultrasonic transducer is essential for fast and accurate three-dimensional (3D) volumetric ultrasound imaging. However, these arrays, usually consisting of thousands of elements, not only face challenges of poor performance and complex wiring due to high-density elements and small element sizes but also put high requirements for electronic systems. Current commercially available fully-sampled matrix arrays, dividing the aperture into four fixed sub-apertures to reduce system channels through multiplexing are widely used. However, the fixed sub-aperture configuration limits imaging flexibility and the gaps between sub-apertures lead to reduced imaging quality. In this study, we propose a high-performance multiplexed matrix array by the design of 1-3 piezocomposite and gapless sub-aperture configuration, as well as optimized matching layer materials. Furthermore, we introduce a sub-aperture volumetric imaging method based on the designed matrix array, enabling high-quality and flexible 3D ultrasound imaging with a low-cost 256-channel system. The influence of imaging parameters, including the number of sub-apertures and steering angle on imaging quality was investigated by simulation, in vitro and in vivo imaging experiments. The fabricated matrix array has a center frequency of 3.4 MHz and a -6 dB bandwidth of above 70%. The proposed sub-aperture volumetric imaging method demonstrated a 10% improvement in spatial resolution, a 19% increase in signal-to-noise ratio, and a 57.7% increase in contrast-to-noise ratio compared with the fixed sub-aperture array imaging method. This study provides a new strategy for high-quality volumetric ultrasound imaging with a low-cost system.


Asunto(s)
Imagenología Tridimensional , Transductores , Ultrasonografía/métodos , Relación Señal-Ruido , Electrónica , Fantasmas de Imagen
9.
Redox Biol ; 69: 102991, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103343

RESUMEN

Head and neck cancer (HNC) is the seventh most prevalent cancer globally, often characterized by chemo-resistance and immunosuppression, which significantly hampers treatment efficacy. Cold atmospheric plasma (CAP) has recently emerged as a promising adjuvant oncotherapy with substantial potential and advantages. In this study, Piezobrush® PZ2, a handheld CAP unit based on the piezoelectric direct discharge technology, was used to generate and deliver non-thermal plasma. We aimed to investigate the effects of CAPPZ2 on various types of HNC cells and elucidate the underlying mechanisms. In addition, we endeavored to examine the efficacy of combining CAPPZ2 with chemotherapy drugs (i.e., cisplatin) or immune checkpoint blockade (ICB, i.e., PD1 antibody) in HNC treatment. Firstly, the results demonstrated that CAPPZ2 exerted anti-neoplastic functions through inhibiting cell proliferation, migration and invasion, and promoting apoptosis and autophagy. Secondly, using transcriptomic sequencing, Western blotting, and quantitative real-time PCR, the mechanisms underlying CAPPZ2 treatment in vitro was presumed to be a multitargeted blockade of major cancer survival pathways, such as redox balance, glycolysis, and PI3K/AKT/mTOR/HIF-1α signaling. Lastly, combinatorial thearpy containing CAPPZ2 and cisplatin or PD-1 antibody significantly suppressed tumor growth and prolonged recipient survival in vivo. Collectively, the synergistic effects of CAPPZ2 and cisplatin or PD-1 antibody could serve as a promising solution to enhance head and neck tumor elimination.


Asunto(s)
Neoplasias de Cabeza y Cuello , Gases em Plasma , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Gases em Plasma/farmacología , Gases em Plasma/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor de Muerte Celular Programada 1 , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
10.
Res Pract Thromb Haemost ; 7(6): 102164, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37680312

RESUMEN

Background: Patients with COVID-19 have a higher risk of thrombosis and thromboembolism, but the underlying mechanism(s) remain to be fully elucidated. In patients with COVID-19, high lipoprotein(a) (Lp(a)) is positively associated with the risk of ischemic heart disease. Lp(a), composed of an apoB-containing particle and apolipoprotein(a) (apo(a)), inhibits the key fibrinolytic enzyme, tissue-type plasminogen activator (tPA). However, whether the higher Lp(a) associates with lower tPA activity, the longitudinal changes of these parameters in hospitalized patients with COVID-19, and their correlation with clinical outcomes are unknown. Objectives: To assess if Lp(a) associates with lower tPA activity in COVID-19 patients, and how in COVID-19 populations Lp(a) and tPA change post infection. Methods: Endogenous tPA enzymatic activity, tPA or Lp(a) concentration were measured in plasma from hospitalized patients with and without COVID-19. The association between plasma tPA and adverse clinical outcomes was assessed. Results: In hospitalized patients with COVID-19, we found lower tPA enzymatic activity and higher plasma Lp(a) than that in non-COVID-19 controls. During hospitalization, Lp(a) increased and tPA activity decreased, which associates with mortality. Among those who survived, Lp(a) decreased and tPA enzymatic activity increased during recovery. In patients with COVID-19, tPA activity is inversely correlated with tPA concentrations, thus, in another larger COVID-19 cohort, we utilized plasma tPA concentration as a surrogate to inversely reflect tPA activity. The tPA concentration was positively associated with death, disease severity, plasma inflammatory, and prothrombotic markers, and with length of hospitalization among those who were discharged. Conclusion: High Lp(a) concentration provides a possible explanation for low endogenous tPA enzymatic activity, and poor clinical outcomes in patients with COVID-19.

11.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662321

RESUMEN

Obesity is a worldwide epidemic and places individuals at a higher risk for developing comorbidities that include cardiovascular disease and type 2 diabetes. Adipose tissue contains adipocytes that are responsible for lipid metabolism and reducing misdirected lipid storage. Adipocytes facilitate this process through insulin-mediated uptake of glucose and its subsequent metabolism into triglycerides for storage. During obesity, adipocytes become insulin resistant and have a reduced ability to mediate glucose import, thus resulting in whole-body metabolic dysfunction. Scavenger receptor class B type I (SR-BI) has been implicated in glucose uptake in skeletal muscle and adipocytes via its native ligands, apolipoprotein A-1 and high-density lipoproteins. Further, SR-BI translocation to the cell surface in adipocytes is sensitive to insulin stimulation. Using adipocytes differentiated from ear mesenchymal stem cells isolated from wild-type and SR-BI knockout (SR-BI -/- ) mice as our model system, we tested the hypothesis that SR-BI is required for insulin-mediated glucose uptake and regulation of energy balance in adipocytes. We demonstrated that loss of SR-BI in adipocytes resulted in inefficient glucose uptake regardless of cell surface expression levels of glucose transporter 4 compared to WT adipocytes. We also observed reduced glycolytic capacity, increased lipid biosynthesis, and dysregulated expression of lipid metabolism genes in SR-BI -/- adipocytes compared to WT adipocytes. These results partially support our hypothesis and suggest a novel role for SR-BI in glucose uptake and metabolic homeostasis in adipocytes.

12.
Anim Nutr ; 14: 334-342, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37635927

RESUMEN

This study aimed to investigate the potential mitigating effects of N-acyl homoserine lactonase (AHLase) on the virulence of Salmonella typhimurium and its induction of intestinal damages in broilers. In vitro study was firstly conducted to examine if AHLase treatment could attenuate the virulence of S. typhimurium. Then, an in vivo experiment was performed by allocating 240 broiler chicks at 1 d old into 3 groups (8 replicates per group): negative control (NC), positive control (PC), and PC supplemented with 10,000 U/kg AHLase. All chicks except those in NC were orally challenged by S. typhimurium from 8 to 10 d of age. Parameters were measured on d 11 and 21. The results showed that treatment with 1 U/mL AHLase suppressed the biofilm-forming ability (including biofilm biomass, extracellular DNA secretion and biofilm formation-related gene expression), together with swarming motility and adhesive capacity of S. typhimurium. Supplemental 10,000 U/kg AHLase counteracted S. typhimurium-induced impairments (P < 0.05) in broiler growth performance (including final body weight, average daily gain and average daily feed intake) during either 1-11 d or 12-21 d, and increases (P < 0.05) in the indexes of liver, spleen and bursa of Fabricius on d 11, together with reductions (P < 0.05) in ileal villus height and its ratio to crypt depth on both d 11 and 21. AHLase addition also normalized the increased (P < 0.05) mRNA expression of ileal occludin on both d 11 and 21 in S. typhimurium-challenged broilers. However, neither S. typhimurium challenge nor AHLase addition altered (P > 0.05) serum diamine oxidase activity of broilers. Noticeably, S. typhimurium challenge caused little change in the mRNA expression of ileal inflammatory cytokines except for an increase (P < 0.05) in interleukin-8 expression on d 11, whereas AHLase addition normalized (P < 0.05) this change. In conclusion, AHLase treatment could attenuate the virulence and pathogenicity of S. typhimurium, thus contributing to alleviate S. typhimurium-induced growth retardation and intestinal damages in broilers.

13.
Free Radic Biol Med ; 208: 134-152, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543168

RESUMEN

Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and the fourth leading cause of cancer-related death worldwide. Advanced or metastatic HCC is currently managed using systemic drug therapy with unsatisfactory patient survival. Cold atmospheric plasma has emerged as a promising, physicochemical, and broad-spectrum oncotherapy. In this preclinical study, we investigated the anti-neoplastic functions and mechanism of piezoelectric direct discharge technology-based CAP, Piezo-CAP, on HCC in vitro and in vivo. Various HCC cells lines, such as SMMC7721, HepG2 and LM3, were used as in vitro cancer model for the phenotypic and mechanistic studies. Specifically, the cell counting Kit-8 and colony formation assay, flow cytometry, Transwell assay, Western blot, reactive oxygen species (ROS) assay, and glutathione to oxidized glutathione ratio (GSH/GSSG) assay were used to demonstrate plasma-induced changes in HCC cell proliferation, cell cycle progression, migration and invasion, epithelial-to-mesenchymal transition, intracellular ROS, and antioxidant capacity, respectively. In addition, the Acridine orange and ethidium bromide (AO/EB) staining and transmission electron microscopy were performed for cellular and subcellular assessment of HCC cell apoptosis. The Ad-mCherry-RFP-LC3B fluorescent double-labeled lentiviral system was used to detect autophagic flux. On the other hand, RNA-sequencing, quantitative real-time PCR, and Western blot were used to demonstrate plasma-induced metabolic and molecular disruption of tumor glycolysis and oncogenic proliferation, respectively. In vivo experiments using a human cell-line-derived xenograft model and immunohistochemistry (IHC) were utilized to investigate the mechanism. Piezo-CAP exerted anti-neoplastic functions through inhibiting cell proliferation, migration and invasion, and promote cell apoptosis and autophagy. Treatment of Piezo-CAP could suppress proliferation and induce autophagy of HCC cells through simultaneously disrupts cancer survival pathways of redox deregulation, glycolytic pathway, and PI3K/AKT/mTOR/HIF1α pathway signaling. Moreover, upon translation of these in vitro results into the tissue level, Piezo-CAP significantly suppressed in situ tumor growth. These findings collectively suggest that Piezo-CAP-induced apoptosis and autophagy of HCC cells though a multitargeted blockade of major cancer survival pathways of deregulated redox balance, glycolysis, and PI3K/AKT/mTOR/HIF-1α signaling.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Proliferación Celular , Autofagia , Glucólisis
14.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511510

RESUMEN

Amino acid metabolism has been implicated in tumorigenesis and tumor progression. Alterations in intracellular and extracellular metabolites associated with metabolic reprogramming in cancer have profound effects on gene expression, cell differentiation, and tumor immune microenvironment. However, the prognostic significance of amino acid metabolism in head and neck cancer remains to be further investigated. In this study, we identified 98 differentially expressed genes related to amino acid metabolism in head and neck cancer in The Cancer Genome Atlas. Using batch univariate Cox regression and Lasso regression, we extracted nine amino acid metabolism-related genes. Based on that, we developed the amino acid metabolism index. The prognostic value of this index was validated in two Gene Expression Omnibus cohorts. The results show that this model can help predict tumor recurrence and prognosis. The infiltration of immune cells in the tumor microenvironment was analyzed, and it was discovered that the high index is associated with an immunosuppressive microenvironment. In addition, this study demonstrated the impact of the amino acid metabolism index on clinical indicators, survival of patients with head and neck cancer, and the prediction of treatment response to immune checkpoint inhibitors. We conducted several cell experiments and demonstrated that epigenetic drugs could affect the index and enhance tumor immunity. In conclusion, our study demonstrates that the index not only has important prognostic value in head and neck cancer patients but also facilitates patient stratification for immunotherapy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Recurrencia Local de Neoplasia , Humanos , Pronóstico , Neoplasias de Cabeza y Cuello/genética , Carcinogénesis , Inmunosupresores , Aminoácidos , Microambiente Tumoral/genética
15.
Front Cardiovasc Med ; 10: 1046495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180782

RESUMEN

Introduction: Adipose tissue constantly secretes adipokines and extracellular vesicles including exosomes to crosstalk with distinct tissues and organs for whole-body homeostasis. However, dysfunctional adipose tissue under chronic inflammatory conditions such as obesity, atherosclerosis, and diabetes shows pro-inflammatory phenotypes accompanied by oxidative stress and abnormal secretion. Nevertheless, molecular mechanisms of how adipocytes are stimulated to secrete exosomes under those conditions remain poorly understood. Methods: Mouse and human in vitro cell culture models were used for performing various cellular and molecular studies on adipocytes and macrophages. Statistical analysis was performed using Student's t-test (two-tailed, unpaired, and equal variance) for comparisons between two groups or ANOVA followed by Bonferroni's multiple comparison test for comparison among more than two groups. Results and discussion: In this work, we report that CD36, a scavenger receptor for oxidized LDL, formed a signaling complex with another membrane signal transducer Na/K-ATPase in adipocytes. The atherogenic oxidized LDL induced a pro-inflammatory response in in vitro differentiated mouse and human adipocytes and also stimulated the cells to secrete more exosomes. This was largely blocked by either CD36 knockdown using siRNA or pNaKtide, a peptide inhibitor of Na/K-ATPase signaling. These results showed a critical role of the CD36/Na/K-ATPase signaling complex in oxidized LDL-induced adipocyte exosome secretion. Moreover, by co-incubation of adipocyte-derived exosomes with macrophages, we demonstrated that oxidized LDL-induced adipocyte-derived exosomes promoted pro-atherogenic phenotypes in macrophages, including CD36 upregulation, IL-6 secretion, metabolic switch to glycolysis, and mitochondrial ROS production. Altogether, we show here a novel mechanism through which adipocytes increase exosome secretion in response to oxidized LDL and that the secreted exosomes can crosstalk with macrophages, which may contribute to atherogenesis.

16.
FASEB J ; 37(4): e22835, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36856735

RESUMEN

Through its classic ATP-dependent ion-pumping function, basolateral Na/K-ATPase (NKA) generates the Na+ gradient that drives apical Na+ reabsorption in the renal proximal tubule (RPT), primarily through the Na+ /H+ exchanger (NHE3). Accordingly, activation of NKA-mediated ion transport decreases natriuresis through activation of basolateral (NKA) and apical (NHE3) Na+ reabsorption. In contrast, activation of the more recently discovered NKA signaling function triggers cellular redistribution of RPT NKA and NHE3 and decreases Na+ reabsorption. We used gene targeting to test the respective contributions of NKA signaling and ion pumping to the overall regulation of RPT Na+ reabsorption. Knockdown of RPT NKA in cells and mice increased membrane NHE3 and Na+ /HCO3 - cotransporter (NBCe1A). Urine output and absolute Na+ excretion decreased by 65%, driven by increased RPT Na+ reabsorption (as indicated by decreased lithium clearance and unchanged glomerular filtration rate), and accompanied by elevated blood pressure. This hyper reabsorptive phenotype was rescued upon crossing with RPT NHE3-/- mice, confirming the importance of NKA/NHE3 coupling. Hence, NKA signaling exerts a tonic inhibition on Na+ reabsorption by regulating key apical and basolateral Na+ transporters. This action, lifted upon NKA genetic suppression, tonically counteracts NKA's ATP-driven function of basolateral Na+ reabsorption. Strikingly, NKA signaling is not only physiologically relevant but it also appears to be functionally dominant over NKA ion pumping in the control of RPT reabsorption.


Asunto(s)
Túbulos Renales , Sodio , Animales , Ratones , Intercambiador 3 de Sodio-Hidrógeno , ATPasa Intercambiadora de Sodio-Potasio , Adenosina Trifosfato
17.
Environ Res ; 226: 115676, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907344

RESUMEN

Efficient abatement of antibiotics from livestock wastewater is in urgent demand, but still challenging. In this study, alkaline-modified biochar with larger surface area (130.520 m2 g-1) and pore volume (0.128 cm3 g-1) was fabricated and explored for the adsorption of different types of antibiotics from livestock wastewater. Batch adsorption experiments demonstrated that the adsorption process was mainly determined by chemisorption and was heterogeneous, which could be moderately affected by the variations of solution pH (3-10). Furthermore, the computational analysis based on density functional theory (DFT) indicated that the -OH groups on biochar surface could serve as the dominant active sites for antibiotics adsorption due to the strongest adsorption energies between antibiotics and -OH groups. In addition, the antibiotics removal was also evaluated in multi-pollutants system, where biochar performed synergistic adsorption towards Zn2+/Cu2+ and antibiotics. Overall, these findings not only deepen our understandings on the adsorption mechanism between biochar and antibiotics, but also promote the application of biochar in the remediation of livestock wastewater.


Asunto(s)
Antibacterianos , Contaminantes Químicos del Agua , Animales , Aguas Residuales , Ganado , Adsorción , Descontaminación , Carbón Orgánico/química , Contaminantes Químicos del Agua/análisis , Cinética
18.
Pest Manag Sci ; 79(1): 349-356, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36153708

RESUMEN

BACKGROUND: The lack of novel fungicide and appearance of resistance are the most emergent problems in the control of Phytophthora diseases. Plant immunity elicitors that induce systemic resistance in plants are regarded as the new strategy for plant disease control. Streptomyces can produce a variety of bioactive natural products, which are important resources for lead compounds of plant immunity elicitors. RESULTS: A novel peptidendrocin C (1) together with the known analog peptidendrocin B (2) were isolated from Streptomyces pseudovenezuelae NA07424. Their structures were confirmed by spectroscopic data and Marfey's reaction. In bioactive assays, compound 1 played an important role in inducing systemic resistance of Nicotiana benthamiana against Phytophthora capsici growth, with a 90.5% inhibition ratio at 400 µg/mL, while compound 2 showed moderate activity, inhibiting P. capsici growth by a 50.8% decrease at 400 µg/mL. Simultaneously, two compounds promoted enhanced expression of the PR1 gene and callose accumulation in N. benthamiana and Arabidopsis thaliana. In this paper, we also provide the first insights into their biosynthesis by confirming their biosynthesis gene cluster and related functional genes. CONCLUSION: Our findings show that 1 and 2 have the potential to be used as lead compounds for development of new plant immunity elicitors to control Phytophthora diseases. The study of the biosynthesis pathway lays the groundwork for further application of the bioactive natural products. © 2022 Society of Chemical Industry.


Asunto(s)
Productos Biológicos , Phytophthora , Streptomyces , Streptomyces/genética
19.
Metabolites ; 12(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36355121

RESUMEN

A higher postprandial triglycerides response and hemorheological abnormalities may increase the incidence of metabolic disorders and negatively interfere with the aging process. A single session of preprandial endurance exercise was found to be effective in reducing triglyceride levels after a high-fat diet. However, whether the exercise-induced reduction in postprandial triglyceride levels influences hemorheological indicators remains unknown. This study aims to investigate the effects of postprandial lipemia on hemorheological properties and oxidative stress. Eight healthy young male participants completed two experimental trials. On day 1, the participants were randomly assigned to walk for 1 h at 50% VO2max (EE trial) or rest (CON trial). On day 2, participants rested and consumed a high-fat meal in the morning. Results: The postprandial area under the curve (AUC) of plasma TG concentration was significantly lower in EE compared to CON (EE: 9.2 ± 1.9; CON: 10.9 ± 1.7 mmol/L·h−1; p = 0.013; Cohen's d = 0.036). No significant difference was observed in hemorheological properties and MDA (p > 0.05). Endurance exercise effectively decreased postprandial TG concentration but did not influence the postprandial hemorheological properties and oxidative stress indicators.

20.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377663

RESUMEN

Mutational activation of KRAS is a common oncogenic event in lung cancer, yet effective therapies are still lacking. Here, we identify B cell lymphoma 6 (BCL6) as a lynchpin in KRAS-driven lung cancer. BCL6 expression was increased upon KRAS activation in lung tumor tissue in mice and was positively correlated with the expression of KRAS-GTP, the active form of KRAS, in various human cancer cell lines. Moreover, BCL6 was highly expressed in human KRAS-mutant lung adenocarcinomas and was associated with poor patient survival. Mechanistically, the MAPK/ERK/ELK1 signaling axis downstream of mutant KRAS directly regulated BCL6 expression. BCL6 maintained the global expression of prereplication complex components; therefore, BCL6 inhibition induced stalling of the replication fork, leading to DNA damage and growth arrest in KRAS-mutant lung cancer cells. Importantly, BCL6-specific knockout in lungs significantly reduced the tumor burden and mortality in the LSL-KrasG12D/+ lung cancer mouse model. Likewise, pharmacological inhibition of BCL6 significantly impeded the growth of KRAS-mutant lung cancer cells both in vitro and in vivo. In summary, our findings reveal a crucial role of BCL6 in promoting KRAS-addicted lung cancer and suggest BCL6 as a therapeutic target for the treatment of this intractable disease.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pulmonares/metabolismo , Mutación , Modelos Animales de Enfermedad , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA