Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(5): 2208-2217, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35099956

RESUMEN

Iridium (Ir)-based electrocatalysts are widely explored as benchmarks for acidic oxygen evolution reactions (OERs). However, further enhancing their catalytic activity remains challenging due to the difficulty in identifying active species and unfavorable architectures. In this work, we synthesized ultrathin Ir-IrOx/C nanosheets with ordered interlayer space for enhanced OER by a nanoconfined self-assembly strategy, employing block copolymer formed stable end-merged lamellar micelles. The interlayer distance of the prepared Ir-IrOx/C nanosheets was well controlled at ∼20 nm and Ir-IrOx nanoparticles (∼2 nm) were uniformly distributed within the nanosheets. Importantly, the fabricated Ir-IrOx/C electrocatalysts display one of the lowest overpotential (η) of 198 mV at 10 mA cm-2geo during OER in an acid medium, benefiting from their features of mixed-valence states, rich electrophilic oxygen species (O(II-δ)-), and favorable mesostructured architectures. Both experimental and computational results reveal that the mixed valence and O(II-δ)- moieties of the 2D mesoporous Ir-IrOx/C catalysts with a shortened Ir-O(II-δ)- bond (1.91 Å) is the key active species for the enhancement of OER by balancing the adsorption free energy of oxygen-containing intermediates. This strategy thus opens an avenue for designing high performance 2D ordered mesoporous electrocatalysts through a nanoconfined self-assembly strategy for water oxidation and beyond.

2.
Adv Mater ; 33(21): e2008668, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33837605

RESUMEN

The evolution of polygonal-shaped nanoholes on the (100) surface of germanium, aided by focused ion beam induced self-organization, is presented. The energetic beam of ions creates a viscous phase which, at a thermodynamical minimum, leads to surface self-organization. A directed viscous-flow along the predefined nanoholes provides well-ordered polygonal nanostructures, ranging from triangles to hexagons and octagons, as desired. The amorphization exhibiting a confined viscous-flow at the walls of nanoholes is attributed to the localized melting zones induced by site-specific thermal spikes during ion irradiation, as revealed by microscopy and molecular dynamics studies. This leads to a local self-organization in the vicinity of each circular nanohole via a viscous-fingering process at the nanoscale. Such controlled self-organization, with the help of a predefined scanning grid, transforms the circular holes into the desired polygonal shape. The present morphology manipulation promises to surmount the barriers concerning the size reduction efforts in the field of nanofabrication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA