Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 342: 123090, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38072026

RESUMEN

Perfluorooctanoic acid (PFOA) is a widely used industrial compound that has been found to induce intestinal toxicity. However, the underlying mechanisms have not been fully clarified and effective interventions are rarely developed. Inulin, a prebiotic, has been used as a supplement in human daily life as well as in gastrointestinal diseases and metabolic disorders. In this study, male mice were exposed to PFOA with or without inulin supplementation to investigate the enterotoxicity and potential intervention effects of inulin. Mice were administered PFOA at 1 mg/kg/day, PFOA with inulin at 5 g/kg/day, or Milli-Q water for 12 weeks. Histopathological analysis showed that PFOA caused colon shortening, goblet cell reduction, and inflammatory cell infiltration. The expression of the tight junction proteins ZO-1, occludin and claudin5 significantly decreased, indicating impaired barrier function. According to the RNA-sequencing analysis, PFOA exposure resulted in 917 differentially expressed genes, involving 39 significant pathways, such as TNF signaling and cell cycle pathways. In addition, the protein expression of TNF-α, IRG-47, cyclinB1, and cyclinB2 increased, while Gadd45γ, Lzip, and Jam2 decreased, suggesting the involvement of the TNF signaling pathway, cell cycle, and cell adhesion molecules in PFOA-associated intestinal injury. Inulin intervention alleviated PFOA-induced enterotoxicity by activating the PI3K/AKT/mTOR signaling pathway and increasing the protein expression of Wnt1, ß-catenin, PI3K, Akt3, and p62, while suppressing MAP LC3ß, TNF-α, and CyclinE expression. These findings suggested that PFOA-induced intestinal injury, including inflammation and tight junction disruption, was mitigated by inulin through modifying the PI3K/AKT/mTOR signaling pathways. Our study provides valuable insights into the enterotoxic effects of PFOA and highlights the potential therapeutic role of inulin.


Asunto(s)
Caprilatos , Fluorocarburos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Masculino , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inulina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
2.
Environ Pollut ; 313: 120186, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36115491

RESUMEN

Although Polychlorinated biphenyl (PCB) levels are decreased in the environment, the adverse effects of gestational exposure on the mother and offspring cannot be ignored due to the vulnerability of the fetus. In the present study, pregnant Balb/c mice were administered PCB52 (1 mg/kg BW/day) or corn oil vehicle by gavage until parturition. In the dams, PCB52 caused histopathological changes in the liver, higher serum levels of aminotransferase and alanine aminotransferase, and activated apoptosis and autophagy, suggesting hepatotoxicity. Overexpressed indicators of TLR4 pathway were observed in the liver of PCB52-exposed dams, indicated hepatic inflammation. Moreover, PCB52 exposure weakened the intestinal barrier and triggered inflammatory response, which might contribute to the hepatic inflammation by gut-liver axis. In the pups, prenatal PCB52 exposure affected the sex ratio at birth and reduced birth length and weights. Similar to the dams, prenatal PCB52 exposure induced hepatotoxicity in the pups without gender difference. Consistent with the alteration of gut microbiota, intestinal inflammation was confirmed, accompanying the disruption in the intestinal barrier and the activation of apoptosis and autophagy in the PCB52-exposed pups. Intestinal injury might be responsible for hepatotoxicity at least in part. Taken together, these findings suggested that gestational PCB52 exposure induced hepatic and intestinal injury in both maternal and offspring mice by arousing inflammation.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Enfermedades del Sistema Digestivo , Enfermedades Intestinales , Bifenilos Policlorados , Efectos Tardíos de la Exposición Prenatal , Alanina Transaminasa , Animales , Aceite de Maíz , Femenino , Inflamación/inducido químicamente , Ratones , Bifenilos Policlorados/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Receptor Toll-Like 4
3.
Food Chem Toxicol ; 166: 113208, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35688268

RESUMEN

Methamphetamine (Meth), an addictive psychostimulant of abuse worldwide, has been a common cause of acute toxic hepatitis in adults. Gut microbiota has emerged as a modulator of host immunity via metabolic pathways. However, the microbial mechanism of Meth-induced hepatic inflammation and effective therapeutic strategies remain unknown. Here, mice were intraperitoneally (i.p.) injected with Meth to induce hepatotoxicity. Cecal microbiome and bile acids (BAs) composition were analyzed after Meth administration. Fecal microbiota transplantation (FMT) technology was utilized to investigate the role of microbiota. Additionally, the protective effects of obeticholic acid (OCA), an agonist of farnesoid X receptor (FXR), were evaluated. Results indicated that Meth administration induced hepatic cholestasis, dysfunction and aroused hepatic inflammation by stimulating the TLR4/MyD88/NF-κB pathway in mice. Meanwhile, Meth disturbed the cecal microbiome and impaired the homeostasis of BAs. Interestingly, FMT from Meth administered mice resulted in serum and hepatic BA accumulation and transferred similar phenotypic changes into the healthy recipient mice. Finally, OCA normalized Meth-induced BA accumulation in both serum and the liver, and effectively protected against Meth-induced hepatic dysfunction and inflammation by suppressing the TLR4/MyD88/NF-κB pathway. This study established the importance of microbial mechanism and its inhibition as a potential therapeutic target to treat Meth-related hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Metanfetamina , Animales , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Homeostasis , Inflamación/tratamiento farmacológico , Hígado , Metanfetamina/toxicidad , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptor Toll-Like 4/metabolismo
4.
Toxicol Appl Pharmacol ; 443: 116011, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35390362

RESUMEN

Methamphetamine (METH) is a psychostimulant abused worldwide. Its abuse induces intestinal toxicity. Moreover, the gut microbiota is altered by drugs, which induces intestinal injury. Whether gut microbiota mediates METH-induced intestinal toxicity remains to be validated. In the present study, wild-type and TLR4-/- mice were treated with METH. Gut microbiota was determined using 16S rRNA gene sequencing. Transcriptomics of the intestinal mucosa was performed by RNA-Sequencing. Blood levels of pro-inflammatory cytokines and lipopolysaccharide (LPS), the intestinal barrier, and inflammation were also assessed. METH treatment weakened the intestinal barrier and increased pro-inflammatory cytokines and LPS levels in the blood. Moreover, METH treatment significantly decreased the diversity of probiotics but increased the abundance of pathogenic gut microbiota, contributing to the over-production of LPS and disruption of intestinal barrier. Inflammatory pathways were enriched in the intestinal mucosa of METH-treated mice by KEGG analysis. Consistently, activation of the TLR4 pathway was determined in METH-treated mice, which confirmed intestinal inflammation. However, pretreatment with antibiotics or Tlr4 silencing significantly alleviated METH-induced gut microbiota dysbiosis, LPS over-production, intestinal inflammation, and disruption of the intestinal barrier. These findings suggested that the gut microbiota and LPS-mediated inflammation took an important role in METH-induced intestinal injury. Taken together, these findings suggest that METH-induced intestinal injury is mediated by gut microbiota dysbiosis and LPS-associated inflammation.


Asunto(s)
Microbioma Gastrointestinal , Metanfetamina , Animales , Citocinas/metabolismo , Disbiosis/inducido químicamente , Inflamación/inducido químicamente , Mucosa Intestinal/metabolismo , Lipopolisacáridos/toxicidad , Metanfetamina/toxicidad , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
5.
Sci Total Environ ; 820: 153281, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35066053

RESUMEN

GenX is an alternative to perfluorooctanoic acid (PFOA) and was included in the accession list of Substances of Very High Concern in 2019. Gestational GenX exposure induces maternal hepatotoxicity in animals. However, the mechanisms of GenX toxicity have not been explored. In the present study, pregnant Balb/c mice were administered with PFOA (1 mg/kg BW/day), GenX (2 mg/kg BW/day), or Milli-Q water by gavage during gestation. Similar hepatic pathological changes, including enlargement of hepatocytes, cytoplasm loss, nucleus migration, inflammatory cell infiltration, and reduction of glycogen storage, were observed in PFOA and GenX groups. Increased expression levels of indicators of the TLR4 pathway indicated activation of inflammation in the liver of maternal mice after exposure to PFOA or GenX, consistent with the pathological changes. Overexpression of cleaved PARP-1, cleaved caspase 3, Bax and decreased Bcl-2 proteins indicated activation of apoptosis, whereas overexpression of ULK-1, p62, beclin-1, LC3-II proteins and downregulation of p-mTOR implied that PFOA and GenX exposure initiated autophagy. Decreased secretion of mucus, reduced expression levels of tight junction proteins, and higher serum levels of lipopolysaccharide indicated disruption of the intestinal barrier. Translocation of lipopolysaccharide may be recognized by TLR4, thus triggering inflammatory pathway in the maternal liver. In summary, gestational exposure to PFOA or GenX induced maternal hepatic alterations through the gut-liver axis.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Animales , Caprilatos/metabolismo , Caprilatos/toxicidad , Femenino , Fluorocarburos/análisis , Hígado/química , Ratones , Embarazo , Contaminantes Químicos del Agua/análisis
6.
Front Pharmacol ; 12: 716703, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381368

RESUMEN

Methamphetamine (METH) is a major psychostimulant drug of abuse worldwide, and its neurotoxicity has been studied extensively. In addition to neurotoxicity, METH can also induce hepatotoxicity. The underlying mechanism of intestinal microorganisms in METH-induced hepatotoxicity remains unclear. In this study, mice have received antibiotics intragastrically or PBS once each day for 1 week, followed by METH or saline. The antibiotics attenuated METH-induced hepatotoxicity as evidenced by histopathological observation and biochemical analysis; furthermore, they alleviated METH-induced oxidative stress. The effect of antibiotics on METH-induced hepatotoxicity was investigated using RNA-sequencing (RNA-seq). The RNA-seq results demonstrated that antibiotics could regulate 580 differentially expressed genes (DEGs), of which 319 were upregulated after METH treatment and then downregulated with antibiotic pretreatment and 237 were first downregulated after METH administration and then upregulated after antibiotic pretreatment, in addition to 11 upregulated and 13 downregulated ones simultaneously in METH and antibiotic-pretreated groups. RNA-seq analyses revealed that TLR4 is one of the hub genes. Western blot analysis indicated that antibiotics inhibited the increase of TLR4, MyD88 and Traf6 induced by METH. This research suggests that antibiotics may play an important role in preventing METH-induced liver injury by regulating oxidative stress and TLR4/MyD88/Traf6 axis, though further investigation is required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA