Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258382

RESUMEN

Zinc (Zn) and nitrogen (N) are the two crucial nutrients for tea plant growth and development and contribute to the quality formation of tea fresh leaves. In this study, a zinc/iron-regulated transporter-like protein 4 gene (i.e., CsZIP4) was functionally characterized. Expression profiling showed that CsZIP4 could be induced by Zn stresses and a N deficiency. Heterologous expression of CsZIP4 in yeast revealed that CsZIP4 possessed the capacity for Zn transport but not ammonium. Moreover, CsZIP4 overexpression in Arabidopsis thaliana promoted Zn and N uptake and transport and contributed to alleviate Zn stresses by collaborating with N supply, which might be interrelated to the expression of N or Zn metabolism-related genes, such as AtNRT1.1 and AtZIP4. Additionally, CsZIP4 was localized in the plasma membrane and chloroplast, which was helpful in maintaining cellular homeostasis under a Zn excess. Furthermore, silencing of CsZIP4 in tea plants by virus-induced gene silencing increased the chlorophyll content but decreased the Zn content. Finally, the yeast one-hybrid assay demonstrated that CsbZIP2 bound to the CsZIP4 promoter. These results will shed light on the functions of CsZIP4 in the N and Zn interaction in tea plants.

2.
Transl Pediatr ; 13(8): 1395-1405, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39263294

RESUMEN

Background: Hirschsprung's disease (HSCR) is a complex congenital neurodevelopmental disorder affecting colons caused by both genetic and environmental factors. Although several genes have been identified as contributing factors in HSCR, the pathogenesis is still largely unclear, especially for the low prevalent long-segment HSCR (L-HSCR). Gap junction protein alpha 8 (GJA8) is involved in several physiological processes and has been implicated in several diseases. However, the relationship between GJA8 single nucleotide polymorphism (SNP) rs17160783 and HSCR in the southern Chinese population remains unknown. The study aimed to explore the association of genetic variants in GJA8 and HSCR susceptibility in southern Chinese. Methods: SNP rs17160783 A>G in GJA8 was genotyped by TaqMan SNP Genotyping Assay in all samples, which included 1,329 HSCR children (cases) and 1,473 healthy children (controls). Odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the association of GJA8 polymorphisms with HSCR susceptibility. The GTEx database and transcription factor binding site (TFBS) prediction were used to analyze the potential regulatory function of rs17160783. Results: Genetic association analysis illustrated that rs17160783 could increase the risk of L-HSCR (Padj=0.04, ORadj =1.48, 95% CI: 1.02-2.14). We also found that GJA8 expression was increased in HSCR and neurodevelopmentally impaired animal models. External epigenetic data revealed that GJA8 rs17160783 may have the potential to regulate the expression of the GJA8, possibly by altering the binding of transcription factors for GJA8, and consequently impacting the PI3K-Akt signaling pathway during the enteric nervous system (ENS) development. Conclusions: Our results suggested that rs17160783 might play a regulatory role in GJA8 expression and increase the susceptibility of L-HSCR in children from southern China.

3.
Biomedicines ; 12(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39200098

RESUMEN

Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.

4.
Ecotoxicol Environ Saf ; 283: 116785, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067075

RESUMEN

Tea tree is a fluorine (F)-enriched plant, leading to much concern about the safety of drinking tea from tea tree (Camellia sinensis (L.) Kuntze). Tea tree is a perennial leaf-harvested crop, and tea production in China is generally categorized as spring tea, summer tea and autumn tea in its annual growth rounds. However, the seasonally dynamic changes of F content and accumulation in the leaves and its drinking safety are poorly understood. In this study, 85 tea varieties cultivated under the same conditions were investigated to analyze the seasonal variation of F content and it's relationships with F accumulation, aluminum (Al), calcium (Ca) and manganese (Mn) and hazard quotient (HQ) in young leaves (one bud and two leaves, YL) and mature leaves (canopy leaves, ML). The average F contents and accumulations were 350 mg kg-1 and 203 g ha-1 in YL, and they were 2451 mg kg-1 and 2578 g ha-1 in ML, respectively, with F mainly accumulated in ML. As the growing season progresses, the F content showed a gradual increase in YL, while a decrease in ML, inferring that F may be redistributed from mature leaves to young leaves. Additionally, the F content was quite different among tea varieties which are suitable for processing oolong tea, green tea, and black tea, with higher F accumulation in oolong tea varieties than in green and black tea varieties. Moreover, F content and accumulation could be obviously affected by the geographical origin of the tea tree varieties, with significantly higher F content in the varieties from F rich fluorite belts than other regions. Furthermore, F content and accumulation showed a significant positive correlation with the content of Al and Mn (p < 0.05). Based on a daily tea consumption of 8.7 g, the HQ was investigated to show that the proportion of tea leaves with HQ<1 made from spring, summer and autumn tender leaves of 85 varieties was 100 %, 90.6 % and 50.6 %, respectively, indicating that the tea with the best drinking safety comes from spring, followed by summer, and then autumn. This result suggests that it could be necessary to avoid planting tea trees in fluorite mining areas, choose low F tea tree varieties, and control the tenderness of fresh leaves in order to ensure the safety of tea drinking.


Asunto(s)
Camellia sinensis , Flúor , Hojas de la Planta , Estaciones del Año , , Camellia sinensis/química , Hojas de la Planta/química , China , Medición de Riesgo , Flúor/análisis , Té/química , Manganeso/análisis , Aluminio/análisis , Calcio/análisis
5.
Cell Biosci ; 14(1): 75, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849934

RESUMEN

The central nervous system (CNS) is the most delicate system in human body, with the most complex structure and function. It is vulnerable to trauma, infection, neurodegeneration and autoimmune diseases, and activates the immune system. An appropriate inflammatory response contributes to defence against invading microbes, whereas an excessive inflammatory response can aggravate tissue damage. The NLRP3 inflammasome was the first one studied in the brain. Once primed and activated, it completes the assembly of inflammasome (sensor NLRP3, adaptor ASC, and effector caspase-1), leading to caspase-1 activation and increased release of downstream inflammatory cytokines, as well as to pyroptosis. Cumulative studies have confirmed that NLRP3 plays an important role in regulating innate immunity and autoimmune diseases, and its inhibitors have shown good efficacy in animal models of various inflammatory diseases. In this review, we will briefly discuss the biological characteristics of NLRP3 inflammasome, summarize the recent advances and clinical impact of the NLRP3 inflammasome in infectious, inflammatory, immune, degenerative, genetic, and vascular diseases of CNS, and discuss the potential and challenges of NLRP3 as a therapeutic target for CNS diseases.

6.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724987

RESUMEN

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Asunto(s)
Cardiomiopatías Diabéticas , Dinaminas , Células Endoteliales , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Circulación Coronaria , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/etiología , Modelos Animales de Enfermedad , Dinaminas/metabolismo , Dinaminas/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/enzimología , Células Endoteliales/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/enzimología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
7.
J Hazard Mater ; 471: 134308, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631255

RESUMEN

Plants have evolved a series of zinc (Zn) homeostasis mechanisms to cope with the fluctuating Zn in the environment. How Zn is taken up, translocated and tolerate by tea plant remains unknown. In this study, on the basis of RNA-Sequencing, we isolated a plasma membrane-localized Metal Tolerance Protein (MTP) family member CsMTP4 from Zn-deficient tea plant roots and investigated its role in regulation of Zn homeostasis in tea plant. Heterologous expression of CsMTP4 specifically enhanced the tolerance of transgenic yeast to Zn excess. Moreover, overexpression of CsMTP4 in tea plant hairy roots stimulated Zn uptake under Zn deficiency. In addition, CsMTP4 promoted the growth of transgenic Arabidopsis plants by translocating Zn from roots to shoots under Zn deficiency and conferred the tolerance to Zn excess by enhancing the efflux of Zn from root cells. Transcriptome analysis of the CsMTP4 transgenic Arabidopsis found that the expression of Zn metabolism-related genes were differentially regulated compared with wild-type plants when exposed to Zn deficiency and excess conditions. This study provides a mechanistic understanding of Zn uptake and translocation in plants and a new strategy to improve phytoremediation efficiency.


Asunto(s)
Camellia sinensis , Homeostasis , Proteínas de Plantas , Zinc , Arabidopsis/genética , Biodegradación Ambiental , Camellia sinensis/metabolismo , Camellia sinensis/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/genética , Zinc/metabolismo
8.
Pharmacol Res ; 200: 107057, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218357

RESUMEN

Mitochondria-associated ferroptosis exacerbates cardiac microvascular dysfunction in diabetic cardiomyopathy (DCM). Nicorandil, an ATP-sensitive K+ channel opener, protects against endothelial dysfunction, mitochondrial dysfunction, and DCM; however, its effects on ferroptosis and mitophagy remain unexplored. The present study aimed to assess the beneficial effects of nicorandil against endothelial ferroptosis in DCM and the underlying mechanisms. Cardiac microvascular perfusion was assessed using a lectin perfusion assay, while mitophagy was assessed via mt-Keima transfection and transmission electron microscopy. Ferroptosis was examined using mRNA sequencing, fluorescence staining, and western blotting. The mitochondrial localization of Parkin, ACSL4, and AMPK was determined via immunofluorescence staining. Following long-term diabetes, nicorandil treatment improved cardiac function and remodeling by alleviating cardiac microvascular injuries, as evidenced by the improved microvascular perfusion and structural integrity. mRNA-sequencing and biochemical analyses showed that ferroptosis occurred and Pink1/Parkin-dependent mitophagy was suppressed in cardiac microvascular endothelial cells after diabetes. Nicorandil treatment suppressed mitochondria-associated ferroptosis by promoting the Pink1/Parkin-dependent mitophagy. Moreover, nicorandil treatment increased the phosphorylation level of AMPKα1 and promoted its mitochondrial translocation, which further inhibited the mitochondrial translocation of ACSL4 via mitophagy and ultimately suppressed mitochondria-associated ferroptosis. Importantly, overexpression of mitochondria-localized AMPKα1 (mitoAα1) shared similar benefits with nicorandil on mitophagy, ferroptosis and cardiovascular protection against diabetic injury. In conclusion, the present study demonstrated the therapeutic effects of nicorandil against cardiac microvascular ferroptosis in DCM and revealed that the mitochondria-localized AMPK-Parkin-ACSL4 signaling pathway mediates mitochondria-associated ferroptosis and the development of cardiac microvascular dysfunction.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ferroptosis , Humanos , Cardiomiopatías Diabéticas/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Nicorandil/farmacología , Nicorandil/uso terapéutico , Nicorandil/metabolismo , Células Endoteliales/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Miocitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , ARN Mensajero/metabolismo , Diabetes Mellitus/metabolismo
9.
Basic Res Cardiol ; 119(1): 113-131, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168863

RESUMEN

Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.


Asunto(s)
Autofagia Mediada por Chaperones , Daño por Reperfusión , Humanos , Pinacidilo/metabolismo , Células Endoteliales/metabolismo , Calreticulina/metabolismo , Calcio/metabolismo , Daño por Reperfusión/metabolismo , Apoptosis
10.
Foods ; 13(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275692

RESUMEN

A non-targeted metabolomics approach and sensory evaluation, coupled with multivariate statistical analysis, systematically uncover the impact of the rolling time on the quality parameters of black tea. GC-MS analysis reveals that a moderate extension of rolling time favorably contributes to the accumulation of characteristic aroma components in black tea. The volatile components reach their highest concentration in black tea samples processed during an 80-min rolling period. UHPLC-Q-TOF/MS analysis demonstrates a substantial decrease in the contents of catechins and flavonoids with an increase in rolling time. Simultaneously, the production of theaflavins, coupled with the degradation of green bitterness volatiles (GBVs), significantly contributes to the formation of endogenous aroma components in black tea. These findings underscore the close relationship between rolling time control and black tea quality, emphasizing that a moderate extension of the rolling time fosters the development of improved black tea flavor quality. The comprehensive quality evaluation indicates that the optimal duration is 80 min. However, the initial 0 to 20 min of rolling is a crucial phase for the genesis and transformation of black tea quality. This study offers valuable insights into the influence of rolling time on black tea quality, potentially enhancing future studies of rolling technology. It provides theoretical guidelines for optimizing the processing of Gongfu black tea.

11.
Food Chem ; 438: 137837, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37979270

RESUMEN

Acidification of aroma-enhanced black tea during storage was studied. UPLC-Q-TOF/MS (Ultra Performance Liquid Chromatography and Quadrupole-Time of Flight Mass Spectrometer) and HPLC (High-Performance Liquid Chromatography) analysis of non-volatile substances and organic acids revealed a decrease of soluble sugars and amino acids in aroma-enhanced black tea, while an increase in organic acids such as oxalic acid, malic acid and quinic acid. Further in vitro experiments indicated that the acidification of aroma-enhanced tea during storage can be attributed to decomposition of sugars and amino acids by heating, oxidation of aromatic aldehydes. Meanwhile, the amino acids, catechins, soluble sugars and flavonoids that constitute the taste of black tea are further reduced, changing the taste composition of tea infusion and further increasing its acidity. This study revealed the reasons for black tea acidification during aroma enhancement and storage and provided a theoretical basis for improving black tea quality.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Té/química , Odorantes/análisis , Temperatura , Camellia sinensis/química , Aminoácidos , Aminas/análisis , Azúcares , Concentración de Iones de Hidrógeno , Compuestos Orgánicos Volátiles/análisis
12.
Food Chem ; 439: 138176, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091790

RESUMEN

Steamed green tea has a long history and unique aroma, but little is known about its key aroma components. In this study, 173 volatiles in steamed green tea were identified using solvent-assisted flavor evaporation and headspace-solid phase microextraction plus two chromatographic columns of different polarities. Aroma extract dilution analysis revealed 48 highly aroma-active compounds with flavor dilution factors 64-1024. Internal standards were used to calculate odorant active value (OAV), and 11 OAV > 1 key aroma compounds were determined. Omission test identified eight substances, including dimethyl sulfide, (E)-ß-ionone, cis-jasmone, linalool, nonanal, heptanal, isovaleraldehyde and (Z)-3-hexenol, as the key aroma active compounds of steamed green tea. With the increase of withering degree, the content of these substances increased first and then decreased except for heptanal and cis-jasmone. Moreover, the water content of 62 % was suggested to be an appropriate withering degree during the processing of steamed green tea.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Vapor , Compuestos Orgánicos Volátiles/análisis
13.
Food Chem ; 438: 138062, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38064793

RESUMEN

This study used samples processed with an innovative manufacturing process to explore the dynamic changes of large-leaf yellow tea (LYT) in color, aroma, and taste substances, and the quality components were most significantly affected in the stages of first pile-yellowing (FP) and over-fired drying (TD). In this process, the moisture and temperature conditions caused chlorophyll degradation, Maillard reactions, caramelization reactions, and isomerization of phenolic substances, forming the quality of LYT. Specifically, chlorophyll degradation favored the formation of color quality; the taste quality was determined by the content of soluble sugars, amino acids, catechins, etc.; the aroma quality was dependent on the content changes of alcohols and aldehydes, as well as the increase of sweet and roasting aroma substances in the third drying stage. Additionally, twelve key aroma components, including linalool, (E)-ß-ionone, 2,3-diethyl-5-methyl-pyrazine, etc., were identified as contributors to revealing LYT rice crust-like and sweet aroma formation mechanism.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , Camellia sinensis/química , Gusto , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis , Hojas de la Planta/química , Clorofila/análisis
14.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 155-161, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38015527

RESUMEN

Cucurbitacin B, a tetracyclic triterpenoid compound extracted from various plants, has been proven to exert a vital role in various diseases. However, the effect of cucurbitacin B on myocardial infarction (MI) and ischemia-reperfusion (I/R) injury is still relatively unclear. The main purpose of the present study was to investigate the effect of cucurbitacin B on cell apoptosis and oxidative damage after myocardial I/R injury in vitro and in vivo and elucidate the molecular mechanisms underlying its role. The 56-day-old adult mice and 1-day-old neonatal mice cardiomyocytes were used to construct I/R or oxygen-glucose deprivation/reoxygenation (OGD/R) injury models. The oxidative injury, western blot and TUNEL assay were performed to evaluate cardiomyocyte damage in the present study. In vitro, we confirmed that cucurbitacin B could attenuate LDH release, oxidative stress and cell apoptosis in cardiomyocytes exposed to OGD/R. Besides, we confirmed in an adult I/R mouse model that cucurbitacin B can improve cardiac repair and block cell apoptosis in the acute phase (24 h) post-myocardial I/R injury, as well as promote long-term cardiac function and fiber scar area after 28 days of I/R. Mechanically, we clarify that cucurbitacin B exerts cardiomyocyte protective effects through activating the JAK2/STAT3 signaling pathway. In conclusion, our study elucidates for the first time the protective role of cucurbitacin B in cardiac I/R injury, which provides a novel perspective for better prevention of I/R injury through the JAK2/STAT3 signaling pathway.


Asunto(s)
Daño por Reperfusión Miocárdica , Triterpenos , Animales , Ratones , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Triterpenos/farmacología , Triterpenos/uso terapéutico , Apoptosis , Miocitos Cardíacos
15.
Food Chem X ; 19: 100809, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780350

RESUMEN

Nine tea cultivars planted in Enshi were selected and processed into "Lichuan black tea". Sensory evaluation showed that cultivar had the greatest influence on taste and aroma quality, including sweetness, umami and concentration of taste, as well as sweet and floral fragrances of aroma. The non-volatile and volatile components were identified by UPLC-Q-TOF/MS and GC-MS, and PCA analysis showed good separation between cultivars, which could cause the difference in quality. Baiyaqilan, Meizhan and Echa 10 had a floral aroma, with obvious difference in their aromatic composition from other cultivars. Moreover, Echa 10 also had a strong sweet aroma. The key aroma components in Echa 10 (with the largest cultivation area) were further investigated by GC-O-MS combined with odor activity value (OAV) analysis, included ß-damascenone, phenylethylaldehyde, nonenal, geraniol, linalool, jasmonone, (E)-2-nonenal, ß-cyclocitral, (E)-ß-ocimene, methyl salicylate, ß-ionone, 2,6,10,10-tetramethyl-1-oxaspiro[4.5]dec-6-ene, citral, ß-myrcene, nerol, phenethyl alcohol, benzaldehyde, hexanal, nonanoic acid, and jasmin lactone.

16.
Foods ; 12(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37835237

RESUMEN

Tea polysaccharide (TPS) is a bioactive compound extracted from tea. It has raised great interest among researchers due to its bioactivity. However, few studies focused on the diversity of TPS in its compositions and antioxidant activity. This study collected 140 different tea varieties from four tea germplasm gardens in China, and their TPSs in tea shoots were extracted. The extraction efficiency, composition contents, including neutral sugar, uronic acid, protein, and tea polyphenols, and the scavenging abilities of hydroxyl radical (·OH) and superoxide radical (O2-·) of 140 TPSs were determined and analyzed. The results showed significant differences in the compositions and antioxidant activities of TPS extracted from different tea varieties. By applying hierarchical clustering analysis (HCA), we selected nine tea varieties with high TPS extraction efficiency and 26 kinds of TPS with high antioxidant capacity.

17.
Eur J Pediatr ; 182(11): 5203-5210, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37715022

RESUMEN

We aimed to assess whether autoantibodies can be used as biomarkers for necrotizing enterocolitis (NEC) and applied for its early diagnosis. A prospective observational study was conducted in neonates with suspected NEC abdominal distension (the developmental study), which consisted of 50 neonates finally divided into NEC (n = 24) and non-NEC (n = 26) cohorts based on follow-up results. Serum samples were collected within 48 h of illness onset and used for screening NEC-associated plasma autoantibodies by autoantigen microarray. Additionally, we validated anti-myosin autoantibodies by enzyme-linked immunosorbent assay (ELISA) in an independent validation study, for which we selected plasma samples within 48 h of onset of NEC (n = 38) and samples of gestational age- and weight-matched controls (n = 13). Autoantigen microarray revealed that both IgG and IgM anti-myosin autoantibodies in plasma from neonates with NEC were significantly higher than those in neonates with other diagnoses. ELISA showed that plasma anti-myosin autoantibodies increased in the NEC cohort, with 1.5-fold higher levels than in the non-NEC cohort. Anti-myosin autoantibodies were able to distinguish NEC from non-NEC, achieving an area under the curve (AUC) of 0.8856 (95% confidence interval (CI): 0.7918-0.9795), with sensitivity of 81.58% and specificity of 76.93%. Plasma anti-myosin autoantibodies were significantly higher in all three subtypes of NEC (P < 0.0001 for NEC I; P = 0.0018 for NEC II; P = 0.0011 for NEC III), especially in NEC stage I than that in the non-NEC controls. CONCLUSION: Anti-myosin autoantibodies may be applied as a promising diagnostic marker for NEC, especially for NEC stage I. WHAT IS KNOWN: • Intestinal damage and self-antigen exposure may lead to increased autoantibodies, and they are widely used as biomarkers for diagnosing inflammatory bowel disease. • Necrotizing enterocolitis (NEC) is a devastating disease with overwhelming inflammation and immune dysregulation. WHAT IS NEW: • Increased autoantibodies were present in patients with NEC, even before typical X-ray manifestations. • Anti-myosin autoantibodies may be applied as a promising diagnostic marker for NEC.


Asunto(s)
Enterocolitis Necrotizante , Enfermedades Fetales , Enfermedades del Recién Nacido , Femenino , Recién Nacido , Humanos , Enterocolitis Necrotizante/diagnóstico , Edad Gestacional , Biomarcadores , Autoantígenos
18.
J Agric Food Chem ; 71(40): 14706-14719, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37752697

RESUMEN

Fermentation is the key technology for black tea aroma formation. The key aroma substances of black tea at different fermentation stages (unfermented (WDY), underfermented (F1H), fully fermented (F4H), and overfermented (F8H)) were characterized by the methodology of Sensomics. Aroma extract dilution analysis was performed on volatile fractions extracted by using solvent-assisted flavor evaporation and solid-phase microextraction, yielding 93 odor-active areas. Internal standard method plus stable isotope dilution analysis was used for quantitative analysis. The omission experiment identified 23 aroma substances. Further reduction and addition experiments revealed phenylacetaldehyde, (E,E)-2,4-heptadienal, geraniol, linalool, ß-damascenone, 2-methylbutyraldehyde, dimethyl sulfide, and isovaleraldehyde with odor activity values (OAV) > 100 as the characteristic aroma components of F4H and also as the main contributors to aroma differences between different fermentation degrees. The green odor of (E,E)-2,4-heptadienal was highlighted in WDY and F1H relative to that in F4H due to the lower contribution of phenylacetaldehyde and ß-damascenone in the former two samples. Additionally, excessive OAV increase of fatty aldehydes in F8H masked its similar floral and fruity aroma.

19.
Food Chem X ; 18: 100730, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37397208

RESUMEN

This study delved into the aroma characteristics of "Qingxiang" oolong tea, analyzing six different cultivars and their processing modes. The findings showed that both cultivars and processing modes have a significant impact on the oolong tea aroma system. The study identified 18 terpenoid volatiles (VTs), 11 amino-acid-derived volatiles (AADVs), 15 fatty-acid-derived volatiles (FADVs), 3 carotenoid-derived volatiles (CDVs), and 10 other compounds in oolong tea that differentiate it from green and black tea. The turn-over stage was found to be the primary processing stage for oolong tea aroma formation. Molecular sensory analysis revealed that the "fresh" odor attribute is the basis for its aroma, while "floral and fruity" fragrances are its aroma characteristics. The perception of oolong tea as "fresh" and "floral and fruity" is influenced by the interactions of its aroma components. These findings provide a new basis for breed improvement and process enhancement in oolong tea production.

20.
Food Chem Toxicol ; 178: 113939, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37433353

RESUMEN

Fluoride (F-) is widely present in nature, while long-term excessive F- intake can lead to fluorosis. Theaflavins are an important bioactive ingredient of black and dark tea, and black and dark tea water extracts showed a significantly lower F- bioavailability than NaF solutions in previous studies. In this study, the effect and mechanism of four theaflavins (theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate, theaflavin-3,3'-digallate) on F- bioavailability were investigated using normal human small intestinal epithelial cells (HIEC-6) as a model. The results showed that theaflavins could inhibit the absorptive (apical - basolateral) transport of F- while promote its secretory (basolateral - apical) transport in HIEC-6 cell monolayers in a time- and concentration-dependent (5-100 µg/mL) manner, and significantly reduce the cellular F- uptake. Moreover, the HIEC-6 cells treated with theaflavins showed a reduction in cell membrane fluidity and cell surface microvilli. Transcriptome, qRT-PCR and Western blot analysis revealed that theaflavin-3-gallate (TF3G) addition could significantly enhance the mRNA and protein expression levels of tight junction-related genes in HIEC-6 cells, such as claudin-1, occludin and zonula occludens-1 (ZO-1). Overall, theaflavins may reduce F- absorptive transport by regulating tight junction-related proteins, and decreasing intracellular F- accumulation by affecting the cell membrane structure and properties in HIEC-6 cells.


Asunto(s)
Biflavonoides , Catequina , Humanos , Fluoruros , Té/química , Antioxidantes/farmacología , Catequina/metabolismo , Biflavonoides/farmacología , Biflavonoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...