Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967265

RESUMEN

Soil salinity is a worldwide problem threatening crop yields. Some plant growth-promoting rhizobacteria (PGPR) could survive in high salt environment and assist plant adaptation to stress. Nevertheless, the genomic and metabolic features, as well as the regulatory mechanisms promoting salt tolerance in plants by these bacteria remain largely unknown. In the current work, a novel halotolerant PGPR strain, namely, Bacillus sp. strain RA can enhance tomato tolerance to salt stress. Comparative genomic analysis of strain RA with its closely related species indicated a high level of evolutionary plasticity exhibited by strain-specific genes and evolutionary constraints driven by purifying selection, which facilitated its genomic adaptation to salt-affected soils. The transcriptome further showed that strain RA could tolerate salt stress by balancing energy metabolism via the reprogramming of biosynthetic pathways. Plants exude a plethora of metabolites that can strongly influence plant fitness. The accumulation of myo-inositol in leaves under salt stress was observed, leading to the promotion of plant growth triggered by Bacillus sp. strain RA. Importantly, myo-inositol serves as a selective force in the assembly of the phyllosphere microbiome and the recruitment of plant-beneficial species. It promotes destabilizing properties in phyllosphere bacterial co-occurrence networks, but not in fungal networks. Furthermore, interdomain interactions between bacteria and fungi were strengthened by myo-inositol in response to salt stress. This work highlights the genetic adaptation of RA to salt-affected soils and its ability to impact phyllosphere microorganisms through the adjustment of myo-inositol metabolites, thereby imparting enduring resistance against salt stress in tomato.

2.
Front Plant Sci ; 15: 1374086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38693929

RESUMEN

Chloroplast, the site for photosynthesis and various biochemical reactions, is subject to many environmental stresses including salt stress, which affects chloroplast structure, photosynthetic processes, osmotic balance, ROS homeostasis, and so on. The maintenance of normal chloroplast function is essential for the survival of plants. Plants have developed different mechanisms to cope with salt-induced toxicity on chloroplasts to ensure the normal function of chloroplasts. The salt tolerance mechanism is complex and varies with plant species, so many aspects of these mechanisms are not entirely clear yet. In this review, we explore the effect of salinity on chloroplast structure and function, and discuss the adaptive mechanisms by which chloroplasts respond to salt stress. Understanding the sensitivity and responses of chloroplasts to salt stress will help us understand the important role of chloroplasts in plant salt stress adaptation and lay the foundation for enhancing plant salt tolerance.

3.
J Agric Food Chem ; 72(19): 10814-10827, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710027

RESUMEN

Foxtail millet is an important cereal crop that is relatively sensitive to salt stress, with its yield significantly affected by such stress. Alternative splicing (AS) widely affects plant growth, development, and adaptability to stressful environments. Through RNA-seq analysis of foxtail millet under different salt treatment periods, 2078 AS events were identified, and analyses were conducted on differential gene (DEG), differential alternative splicing gene (DASG), and overlapping gene. To investigate the regulatory mechanism of AS in response to salt stress in foxtail millet, the foxtail millet AS genes SiCYP19, with two AS variants (SiCYP19-a and SiCYP19-b), were identified and cloned. Yeast overexpression experiments indicated that SiCYP19 may be linked to the response to salt stress. Subsequently, we conducted overexpression experiments of both alternative splicing variants in foxtail millet roots to validate them experimentally. The results showed that, under salt stress, both SiCYP19-a and SiCYP19-b jointly regulated the salt tolerance of foxtail millet. Specifically, overexpression of SiCYP19-b significantly increased the proline content and reduced the accumulation of reactive oxygen species (ROS) in foxtail millet, compared to that in SiCYP19-a. This shows that SiCYP19-b plays an important role in increasing the content of proline and promoting the clearance of ROS, thus improving the salt tolerance of foxtail millet.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tolerancia a la Sal , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/efectos de los fármacos , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612923

RESUMEN

Small peptides in plants are typically characterized as being shorter than 120 amino acids, with their biologically active variants comprising fewer than 20 amino acids. These peptides are instrumental in regulating plant growth, development, and physiological processes, even at minimal concentrations. They play a critical role in long-distance signal transduction within plants and act as primary responders to a range of stress conditions, including salinity, alkalinity, drought, high temperatures, and cold. This review highlights the crucial roles of various small peptides in plant growth and development, plant resistance to abiotic stress, and their involvement in long-distance transport. Furthermore, it elaborates their roles in the regulation of plant hormone biosynthesis. Special emphasis is given to the functions and mechanisms of small peptides in plants responding to abiotic stress conditions, aiming to provide valuable insights for researchers working on the comprehensive study and practical application of small peptides.


Asunto(s)
Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Aminoácidos , Péptidos , Estrés Fisiológico
5.
Plant Mol Biol ; 113(4-5): 249-264, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37964053

RESUMEN

Salt stress adversely affects plant growth and development. It is necessary to understand the underlying salt response mechanism to improve salt tolerance in plants. MYB transcription factors can regulate plant responses to salt stress. However, only a few studies have explored the role of MYB TFs in Sorghum bicolor (L.) Moench. So we decided to make a systematic analysis and research on the sorghum MYB family. A total of 210 MYB genes in sorghum were identified in this study. Furthermore, 210 MYB genes were distributed across ten chromosomes, named SbMYB1-SbMYB210. To study the phylogeny of the identified TFs, 210 MYB genes were divided into six subfamilies. We further demonstrated that SbMYB genes have evolved under strong purifying selection. SbMYBAS1 (SbMYB119) was chosen as the study object, which the expression decreased under salt stress conditions. Further study of the SbMYBAS1 showed that SbMYBAS1 is located in the nucleus. Under salt stress conditions, Arabidopsis plants overexpressed SbMYBAS1 showed significantly lower dry/fresh weight and chlorophyll content but significantly higher membrane permeability, MDA content, and Na+/K+ ratio than the wild-type Arabidopsis plants. Yeast two-hybrid screening result showed that SbMYBAS1 might interact with proteins encoded by SORBI_302G184600, SORBI_3009G247900 and SORBI_3004G59600. Results also showed that SbMYBAS1 could regulate the expression of AtGSTU17, AtGSTU16, AtP5CS2, AtUGT88A1, AtUGT85A2, AtOPR2 and AtPCR2 under salt stress conditions. This work laid a foundation for the study of the response mechanism of sorghum MYB gene family to salt stress.


Asunto(s)
Arabidopsis , Sorghum , Sorghum/genética , Sorghum/metabolismo , Arabidopsis/genética , Genes myb , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Filogenia
6.
Plant J ; 113(4): 677-697, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534087

RESUMEN

Salt stress is one of the major causes of reduced crop production, limiting agricultural development globally. Plants have evolved with complex systems to maintain the balance between growth and stress responses, where signaling pathways such as hormone signaling play key roles. Recent studies revealed that hormones are modulated by microRNAs (miRNAs). Previously, two sweet sorghum (Sorghum bicolor) inbred lines with different salt tolerance were identified: the salt-tolerant M-81E and the salt-sensitive Roma. The levels of endogenous hormones in M-81E and Roma varied differently under salt stress, showing a different balance between growth and stress responses. miRNA and degradome sequencing showed that the expression of many upstream transcription factors regulating signal transduction and hormone-responsive genes was directly induced by differentially expressed miRNAs, whose levels were very different between the two sweet sorghum lines. Furthermore, the effects of representative miRNAs on salt tolerance in sorghum were verified through a transformation system mediated by Agrobacterium rhizogenes. Also, miR-6225-5p reduced the level of Ca2+ in the miR-6225-5p-overexpressing line by inhibiting the expression of the Ca2+ uptake gene SbGLR3.1 in the root epidermis and affected salt tolerance in sorghum. This study provides evidence for miRNA-mediated growth and stress responses in sweet sorghum.


Asunto(s)
MicroARNs , Sorghum , MicroARNs/genética , MicroARNs/metabolismo , Sorghum/metabolismo , Estrés Fisiológico/genética , Estrés Salino/genética , Grano Comestible/genética , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
7.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628281

RESUMEN

Sweet sorghum has strong stress resistance and is considered a promising energy crop. In the present study, the effects of salt on the membrane lipid metabolism of two sweet sorghum inbred lines (salt-tolerant M-81E and salt-sensitive Roma) were analyzed. After treatment with 150 mM NaCl, higher levels of fresh weight and chlorophyll fluorescence, as well as lower levels of malondialdehyde (MDA) were found in salt-tolerant M-81E. Concomitantly, 702 and 1339 differentially expression genes (DEGs) in M-81E and Roma were identified in response to salt stress. We determined that most DEGs were related to glycerophospholipid metabolism, glycerolipid metabolism, and other membrane lipid metabolisms. Under NaCl treatment, the expression of the membrane-associated phospholipase A1 was down-regulated at the transcriptional level, along with an increased content of phosphatidylcholine (PC) in both cultivars. The inhibition of triacylglycerol (TAG) mobilization in M-81E delayed salt-induced leaf senescence. Furthermore, enhanced levels of glycerol-3-phosphate acyltransferase (GPAT) expression contributed to improved salt resistance in M-81E. The results of this study demonstrate membrane the role of lipid regulation in mediating salt-defensive responses in sweet sorghum and expand our understanding of the relationship between changes in membrane lipid content and salt resistance.


Asunto(s)
Sorghum , Grano Comestible/genética , Perfilación de la Expresión Génica , Lípidos de la Membrana/metabolismo , Estrés Salino , Tolerancia a la Sal/genética , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Sorghum/genética , Sorghum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...