Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(11): e0288818, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37967130

RESUMEN

In the natural environment, complex and changeable meteorological factors can influence changes in the internal physiology and phenotype of crops. It is important to learn how to convert complex meteorological factor stimuli into plant perception phenotypes when analyzing the biological data obtained under the natural field condition. We restored the true gradation distribution of leaf color, which is also known as the skewed distribution of color scale, and obtained 20 multi-dimensional color gradation skewness-distribution (CGSD) parameters based on the leaf color skewness parameter system. Furthermore, we analyzed the correlation between the five corresponding meteorological factors and canopy CGSD parameters of peppers growing in a greenhouse and cabbages growing in an open air environment, built response model and inversion mode of leaf color to meteorological factors. Based on the analysis, we find a new method for correlating complex environmental problems with multi-dimensional parameters. This study provides a new idea for building a correlation model that uses leaf color as a bridge between meteorological factors and plants internal physiological state.


Asunto(s)
Ambiente , Hojas de la Planta , Fenotipo , Conceptos Meteorológicos , Productos Agrícolas , Color
2.
Plant Methods ; 16: 23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32127910

RESUMEN

BACKGROUND: Image processing techniques have been widely used in the analysis of leaf characteristics. Earlier techniques for processing digital RGB color images of plant leaves had several drawbacks, such as inadequate de-noising, and adopting normal-probability statistical estimation models which have few parameters and limited applicability. RESULTS: We confirmed the skewness distribution characteristics of the red, green, blue and grayscale channels of the images of tobacco leaves. Twenty skewed-distribution parameters were computed including the mean, median, mode, skewness, and kurtosis. We used the mean parameter to establish a stepwise regression model that is similar to earlier models. Other models based on the median and the skewness parameters led to accurate RGB-based description and prediction, as well as better fitting of the SPAD value. More parameters improved the accuracy of RGB model description and prediction, and extended its application range. Indeed, the skewed-distribution parameters can describe changes of the leaf color depth and homogeneity. CONCLUSIONS: The color histogram of the blade images follows a skewed distribution, whose parameters greatly enrich the RGB model and can describe changes in leaf color depth and homogeneity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...