Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Eur J Pharm Biopharm ; 199: 114309, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704102

RESUMEN

Oral colon targeted drug delivery system (OCTDDS) is desirable for the treatment of ulcerative colitis (UC). In this study, we designed a partially oxidized sodium alginate-chitosan crosslinked microsphere for UC treatment. Dissipative particle dynamics (DPD) was used to study the formation and enzyme response of gel beads from a molecular perspective. The formed gel beads have a narrow particle size distribution, a compact structure, low cytotoxicity and great colon targeting in vitro and in vivo. Animal experiments demonstrated that gel beads promoted colonic epithelial barrier integrity, decreased the level of pro-inflammatory factors, accelerated the recovery of intestinal microbial homeostasis in UC rats and restored the intestinal metabolic disorders. In conclusion, our gel bead is a promising approach for the treatment of UC and significant for the researches on the pathogenesis and treatment mechanism of UC.


Asunto(s)
Alginatos , Quitosano , Colitis Ulcerosa , Sistemas de Liberación de Medicamentos , Geles , Microesferas , Saponinas , Colitis Ulcerosa/tratamiento farmacológico , Animales , Ratas , Alginatos/química , Quitosano/química , Sistemas de Liberación de Medicamentos/métodos , Masculino , Saponinas/farmacología , Saponinas/administración & dosificación , Saponinas/química , Tamaño de la Partícula , Humanos , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Ratas Sprague-Dawley , Polímeros/química , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Administración Oral
2.
Plant Cell ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723594

RESUMEN

Grain size and weight are crucial yield-related traits in rice (Oryza sativa). Although certain key genes associated with rice grain size and weight have been successfully cloned, the molecular mechanisms underlying grain size and weight regulation remain elusive. Here, we identified a molecular pathway regulating grain size and weight in rice involving the MPS ONE BINDER KINASE ACTIVATOR-LIKE 1A-SERINE/THREONINE-PROTEIN KINASE 38-CYCLIN C (OsMOB1A-OsSTK38-OsCycC) module. OsSTK38 is a nuclear Dbf2-related kinase that positively regulates grain size and weight by coordinating cell proliferation and expansion in the spikelet hull. OsMOB1A interacts with and enhances the autophosphorylation of OsSTK38. Specifically, the critical role of the OsSTK38 S322 site in its kinase activity is highlighted. Furthermore, OsCycC, a component of the Mediator complex, was identified as a substrate of OsSTK38, with enhancement by OsMOB1A. Notably, OsSTK38 phosphorylates the T33 site of OsCycC. The phosphorylation of OsCycC by OsSTK38 influenced its interaction with the transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (OsKNAT7). Genetic analysis confirmed that OsMOB1A, OsSTK38 and OsCycC function in a common pathway to regulate grain size and weight. Taken together, our findings revealed a connection between the Hippo signalling pathway and the Cyclin-Dependent Kinase (CDK) module in eukaryotes. Moreover, they provide insights into the molecular mechanisms linked to yield-related traits and propose innovative breeding strategies for high-yielding varieties.

3.
J Transl Med ; 22(1): 427, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711144

RESUMEN

BACKGROUND: Circular RNAs (circRNAs), one of the major contents of exosomes, have been shown to participate in the occurrence and progression of cancers. The role and the diagnostic potential of exosome-transported circRNAs in non-small-cell lung cancer (NSCLC) remain largely unknown. METHODS: The NSCLC-associated exosomal circ_0061407 and circ_0008103 were screened by circRNA microarray. The role of circ_0061407 and circ_0008103 in NSCLC was examined in vitro and in vivo. The encapsulation of the two circRNAs into exosomes and the transport to recipient cells were observed by confocal microscopy. The effects of exosome-transported circ_0061407 and circ_0008103 on recipient cells were investigated using a co-culture device. Bioinformatics analyses were performed to predict the mechanisms by which circ_0061407 and circ_0008103 affected NSCLC. The quantitative polymerase chain reaction was used to quantify the exosome-containing circ_0061407 and circ_0008103 in the serum samples of healthy, pneumonia, benign lung tumours, and NSCLC. The diagnostic efficacy was evaluated using receiver operating characteristic curves. RESULTS: The levels of circ_0061407 and circ_0008103 within exosomes were down-regulated in the serum of patients with NSCLC. The up-regulation of circ_0061407 and circ_0008103 inhibited the proliferation, migration/invasion, cloning formation of NSCLC cells in vitro and inhibited lung tumour growth in vivo. Circ_0061407 and circ_0008103 were observed to be packaged in exosomes and transported to recipient cells, where they inhibited the proliferation, migration/invasion, and cloning formation abilities of the recipient cells. Moreover, circ_0061407 and circ_0008103 might be involved in the progression of NSCLC by interacting with microRNAs and proteins. Additionally, lower serum exosomal circ_0061407 and circ_0008103 levels were associated with advanced pathological staging and distant metastasis. CONCLUSIONS: This study identified two novel exosome-transported circRNAs (circ_0061407 and circ_0008103) associated with NSCLC. These findings may provide additional insights into the development of NSCLC and potential diagnostic biomarkers for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , ARN Circular , Exosomas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/sangre , ARN Circular/genética , ARN Circular/sangre , ARN Circular/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino , Ratones Desnudos , Persona de Mediana Edad , Ratones Endogámicos BALB C , Curva ROC , Ratones
4.
Leukemia ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643304

RESUMEN

Targeting the metabolic dependencies of acute myeloid leukemia (AML) cells is a promising therapeutical strategy. In particular, the cysteine and methionine metabolism pathway (C/M) is significantly altered in AML cells compared to healthy blood cells. Moreover, methionine has been identified as one of the dominant amino acid dependencies of AML cells. Through RNA-seq, we found that the two nucleoside analogs 8-chloro-adenosine (8CA) and 8-amino-adenosine (8AA) significantly suppress the C/M pathway in AML cells, and methionine-adenosyltransferase-2A (MAT2A) is one of most significantly downregulated genes. Additionally, mass spectrometry analysis revealed that Venetoclax (VEN), a BCL-2 inhibitor recently approved by the FDA for AML treatment, significantly decreases the intracellular level of methionine in AML cells. Based on these findings, we hypothesized that combining 8CA or 8AA with VEN can efficiently target the Methionine-MAT2A-S-adenosyl-methionine (SAM) axis in AML. Our results demonstrate that VEN and 8CA/8AA synergistically decrease the SAM biosynthesis and effectively target AML cells both in vivo and in vitro. These findings suggest the promising potential of combining 8CA/8AA and VEN for AML treatment by inhibiting Methionine-MAT2A-SAM axis and provide a strong rationale for our recently activated clinical trial.

5.
Bioorg Chem ; 147: 107351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593530

RESUMEN

Eleven triterpenoid saponins, including five new compounds, which were named densiflorasides A - E (1 - 5), were isolated from aerial parts of Mussaenda densiflora (Rubiaceae). Their structures were elucidated based on spectroscopic and single-crystal X-ray diffraction analyses and chemical methods. All the isolated compounds and the aglycone heinsiagenin A were evaluated for their immunosuppressive and antiosteoclastogenic activities in vitro. Compounds 6 - 8 and heinsiagenin A inhibited osteoclastogenesis, with IC50 values ranging from 8.24 to 17.7 µM. Furthermore, compounds 3, 6 - 8, and heinsiagenin A significantly inhibited T-cell proliferation, with IC50 values ranging from 2.56 to 8.60 µM, and compounds 3 - 5 and 11 inhibited the proliferation of B lymphocytes, with IC50 values ranging from 1.29 to 8.49 µM. Further in vivo experiments indicated that heinsiagenin A could significantly attenuate IMQ-induced psoriasis and DSS-induced colitis in mice.


Asunto(s)
Proliferación Celular , Relación Dosis-Respuesta a Droga , Inmunosupresores , Saponinas , Triterpenos , Saponinas/farmacología , Saponinas/química , Saponinas/aislamiento & purificación , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Inmunosupresores/farmacología , Inmunosupresores/química , Inmunosupresores/aislamiento & purificación , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/farmacología , Triterpenos/aislamiento & purificación , Estructura Molecular , Linfocitos T/efectos de los fármacos , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Masculino , Osteoclastos/efectos de los fármacos
6.
Cancer Lett ; : 216807, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38462037

RESUMEN

The tumour microenvironment (TME) drives bladder cancer (BLCA) progression. Targeting the TME has emerged as a promising strategy for BLCA treatment in recent years. Furthermore, checkpoint blockade therapies are only beneficial for a minority of patients with BLCA, and drug resistance is a barrier to achieving significant clinical effects of anti-programmed cell death protein-1 (PD-1)/programmed death protein ligand-1 (PD-L1) therapy. In this study, higher low-density lipoprotein receptor-related protein 1 (LRP1) levels were related to a poorer prognosis for patients with various cancers, including those with higher grades and later stages of BLCA. Enrichment analysis demonstrated that LRP1 plays a role in the epithelial-mesenchymal transition (EMT), NOTCH signalling pathway, and ubiquitination. LRP1 knockdown in BLCA cells delayed BLCA progression both in vivo and in vitro. Furthermore, LRP1 knockdown suppressed EMT, reduced DLL4-NOTCH2 signalling activity, and downregulated M2-like macrophage polarisation. Patients with BLCA and higher LRP1 levels responded weakly to anti-PD-1 therapy in the IMvigor210 cohort. Moreover, LRP1 knockdown enhanced the therapeutic effects of anti-PD-1 in mice. Taken together, our findings suggest that LRP1 is a potential target for improving the efficacy of anti-PD-1/PD-L1 therapy by preventing EMT and M2-like macrophage polarisation by blocking the DLL4-NOTCH2 axis.

7.
Vaccine ; 42(9): 2317-2325, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38433065

RESUMEN

BACKGROUND: Vaccination has been proven effective against infection with enterovirus A71 (EV-A71) in clinical trials, but vaccine effectiveness in real-world situations remains incompletely understood. Furthermore, it is not clear whether previous vaccination will result in symptom attenuation among post-vaccinated cases. METHODS: Based on long-term data extracted from the only designed referral hospital for infectious diseases, we used a test-negative case-control design and multivariate logistic regression models to analyze the effectiveness of EV-A71 vaccine against hand, foot and mouth disease (HFMD). And then, generalized linear regression models were used to evaluate the associations between prior vaccination and disease profiles. RESULTS: We selected 4883 inpatients for vaccine efficacy estimations and 2188 inpatients for disease profile comparisons. Vaccine effectiveness against EV-A71-induced HFMD for complete vaccination was 63.4 % and 51.7 % for partial vaccination. The vaccine effectiveness was higher among cases received the first dose within 12 months. No protection was observed against coxsackievirus (CV) A6-, CV-A10- or CV-A16-associated HFMD among children regardless of vaccination status. Completely vaccinated cases had shorter hospital stay and disease course compared to unvaccinated cases (P < 0.05). CONCLUSIONS: These findings reiterate the need to continue the development of a multivalent vaccine or combined vaccines, and have implications for introducing optimized vaccination strategies.


Asunto(s)
Enfermedades Transmisibles , Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Vacunas Virales , Niño , Humanos , Enfermedad de Boca, Mano y Pie/prevención & control , Infecciones por Enterovirus/prevención & control , Vacunación , Anticuerpos Antivirales , Antígenos Virales , Vacunas Combinadas , China
8.
J Leukoc Biol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456763

RESUMEN

Immune evasion by cancer cells poses a significant challenge for natural killer (NK) cell-based immunotherapy. Pyroptosis, a newly discovered form of programmed cell death, has shown great potential for enhancing the antitumor immunity of NK cells. Consequently, targeting pyroptosis has become an attractive strategy for boosting NK cell activity against cancer. In this study, various assays were conducted, including NK cell cytotoxicity assays, flow cytometry, xenograft tumor models, real-time PCR, and ELISA to assess NK cell-mediated cell killing, as well as gene and protein expressions. The results indicated that Euphohelioscopin A (Eupho-A), a potential pyroptosis activator, enhances NK cell-mediated lysis of tumor cells, resulting in inhibiting tumor growth that could be reversed by NK cell depletion. Furthermore, we found that Eupho-A significantly enhanced IFN-γ production in NK cells and synergistically up-regulated GSDME with IFN-γ in cancer cells. Eupho-A also increased the cleavage of GSDME, promoting GZMB-induced pyroptosis, which could be reversed by GSDME knockdown and IFN-γ blockade. Overall, the findings suggested that Eupho-A enhanced NK cell-mediated killing of cancer cells by triggering pyroptosis, making Eupho-A a promising pyroptosis activator with great potential for using in NK cell-based cancer immunotherapy.

9.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302992

RESUMEN

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Madre Neoplásicas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Autorrenovación de las Células/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Células Madre Neoplásicas/patología , Biosíntesis de Proteínas , Ribosomas/metabolismo , ARN
10.
Hepatology ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407233

RESUMEN

BACKGROUND AND AIMS: Liver ischemia-reperfusion injury (IRI) is a common complication of liver transplantation and hepatectomy and causes acute liver dysfunction and even organ failure. Myeloid-derived suppressor cells (MDSCs) accumulate and play immunosuppressive function in cancers and inflammation. However, the role of MDSCs in liver IRI has not been defined. APPROACH AND RESULTS: We enrolled recipients receiving OLT and obtained the pre-OLT/post-OLT blood and liver samples. The proportions of MDSCs were significantly elevated after OLT and negatively associated with liver damage. In single-cell RNA-sequencing analysis of liver samples during OLT, 2 cell clusters with MDSC-like phenotypes were identified and showed maturation and infiltration in post-OLT livers. In the mouse model, liver IRI mobilized MDSCs and promoted their infiltration in the damaged liver, and intrahepatic MDSCs were possessed with enhanced immunosuppressive function by upregulation of STAT3 signaling. Under treatment with αGr-1 antibody or adoptive transfer MDSCs to change the proportion of MDSCs in vivo, we found that intrahepatic MDSCs alleviated liver IRI-induced inflammation and damage by inhibiting M1 macrophage polarization. Mechanistically, bulk RNA-sequencing analysis and in vivo experiments verified that C-X-C motif chemokine ligand 17 (CXCL17) was upregulated by YAP/TEAD1 signaling and subsequently recruited MDSCs through binding with GPR35 during liver IRI. Moreover, hepatic endothelial cells were the major cells responsible for CXCL17 expression in injured livers, among which hypoxia-reoxygenation stimulation activated the YAP/TEAD1 complex to promote CXCL17 transcription. CONCLUSIONS: Endothelial YAP/TEAD1-CXCL17 signaling recruited MDSCs to attenuate liver IRI, providing evidence of therapeutic potential for managing IRI in liver surgery.

11.
Cell Metab ; 36(2): 438-453.e6, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38325338

RESUMEN

The hypothalamus plays a crucial role in the progression of obesity and diabetes; however, its structural complexity and cellular heterogeneity impede targeted treatments. Here, we profiled the single-cell and spatial transcriptome of the hypothalamus in obese and sporadic type 2 diabetic macaques, revealing primate-specific distributions of clusters and genes as well as spatial region, cell-type-, and gene-feature-specific changes. The infundibular (INF) and paraventricular nuclei (PVN) are most susceptible to metabolic disruption, with the PVN being more sensitive to diabetes. In the INF, obesity results in reduced synaptic plasticity and energy sensing capability, whereas diabetes involves molecular reprogramming associated with impaired tanycytic barriers, activated microglia, and neuronal inflammatory response. In the PVN, cellular metabolism and neural activity are suppressed in diabetic macaques. Spatial transcriptomic data reveal microglia's preference for the parenchyma over the third ventricle in diabetes. Our findings provide a comprehensive view of molecular changes associated with obesity and diabetes.


Asunto(s)
Diabetes Mellitus , Núcleo Hipotalámico Paraventricular , Animales , Núcleo Hipotalámico Paraventricular/metabolismo , Transcriptoma/genética , Hipotálamo/metabolismo , Obesidad/metabolismo , Diabetes Mellitus/metabolismo , Perfilación de la Expresión Génica
12.
Phys Chem Chem Phys ; 26(8): 6524-6531, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38329237

RESUMEN

This work presents mechanisms to rationalize the nature of ultrafast photochemical and photophysical processes on the first singlet metal-ligand charge transfer state (1MLCT1) of the [Ru(bpy)3]2+ complex. The 1MLCT1 state is the lowest-lying singlet excited state and the most important intermediate in the early evolution of photoexcited [Ru(bpy)3]2+*. The results obtained from simple but interpretable theoretical models show that the 1MLCT1 state can be very quickly formed via both direct photo-excitation and internal conversions and then can efficiently relax to its equilibrium geometry in ca. 5 fs. The interligand electron transfer (ILET) on the potential energy surface of the 1MLCT1 state is also extremely fast, with a rate constant of ca. 1.38 × 1013 s-1. The ultrafast ILET implies that the excited electron can dynamically delocalize over the three bpy ligands, despite the fact that the excited electron may be localized on either one of the three ligands at the equilibrium geometries of the three symmetric equivalent minima. Since rapid ILET essentially suggests delocalization, the long-standing controversy in inorganic photophysics-whether the excited electron is localized or delocalized-may therefore be calmed down to some extent.

13.
Cancer Res ; 84(10): 1659-1679, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382068

RESUMEN

The tumor microenvironment (TME) in renal cell carcinomas (RCC) is marked by substantial immunosuppression and immune resistance despite having extensive T-cell infiltration. Elucidation of the mechanisms underlying immune evasion could help identify therapeutic strategies to boost the efficacy of immune checkpoint blockade (ICB) in RCC. This study uncovered a mechanism wherein the polyadenylate-binding protein PABPC1L modulates indoleamine 2,3-dioxygenase 1 (IDO1), a prospective target for immunotherapy. PABPC1L was markedly upregulated in RCC, and high PABPC1L expression correlated with unfavorable prognosis and resistance to ICB. PABPC1L bolstered tryptophan metabolism by upregulating IDO1, inducing T-cell dysfunction and Treg infiltration. PABPC1L enhanced the stability of JAK2 mRNA, leading to increased JAK2-STAT1 signaling that induced IDO1 expression. Additionally, PABPC1L-induced activation of the JAK2-STAT1 axis created a positive feedback loop to promote PABPC1L transcription. Conversely, loss of PABPC1L diminished IDO1 expression, mitigated cytotoxic T-cell suppression, and enhanced responsiveness to anti-PD-1 therapy in patient-derived xenograft models. These findings reveal the crucial role of PABPC1L in facilitating immune evasion in RCC and indicate that inhibiting PABPC1L could be a potential immunotherapeutic approach in combination with ICB to improve patient outcomes. SIGNIFICANCE: PABPC1L functions as a key factor in renal cell carcinoma immune evasion, enhancing IDO1 and impeding T-cell function, and represents a potential target to enhance the efficacy of immune checkpoint blockade therapy.


Asunto(s)
Carcinoma de Células Renales , Indolamina-Pirrol 2,3,-Dioxigenasa , Neoplasias Renales , Triptófano , Microambiente Tumoral , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Humanos , Neoplasias Renales/inmunología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Triptófano/metabolismo , Animales , Ratones , Microambiente Tumoral/inmunología , Janus Quinasa 2/metabolismo , Línea Celular Tumoral , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Regulación Neoplásica de la Expresión Génica , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Infect Drug Resist ; 17: 403-416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38328339

RESUMEN

Background: China is a country with a burden of high rates of both TB and multidrug-resistant TB (MDR-TB). However, published data on pyrazinamide (PZA) resistance are still limited in Hunan province, China. This study investigated the prevalence, transmission, and genetic diversity of PZA resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Hunan province. Methods: Drug susceptibility testing (DST) with the Bactec MGIT 960 PZA kit and pyrazinamidase (PZase) testing were conducted on all 298 MDR clinical isolates. Moreover, 24-locus MIRU-VNTR and DNA sequencing of pncA, rpsA, and panD genes were conducted on 180 PZA-resistant (PZA-R) isolates. Results: The prevalence of PZA resistance among MDR-TB strains reached 60.4%. Newly diagnosed PZA-R TB patients and clustered isolates with identical pncA, rpsA, and panD mutations showed that transmission of PZA-R isolates played a significant role in the formation of PZA-R TB. Ninety-eight mutation patterns were observed in the pncA among 180 PZA-R isolates, and seventy-one (72.4%) were point mutations. Twenty-four of these mutations are new, including 2 base substitutions (V93G and T153S) and 22 nucleotide deletions or insertions. The W119C was found in PZA-S isolates, on the other hand, F94L and V155A mutations were found in both PZA resistant and susceptible isolates with positive PZase activity, indicating that they were not associated with PZA resistance. This is not entirely in line with the WHO catalogue. Ten novel rpsA mutations were found in 10 PZA-R isolates, which all combined with mutations in pncA. Thus, it is unpredictable whether these mutations in rpsA can impact PZA resistance. No panD mutation was found in all PZA-R isolates. Conclusion: DNA sequencing of pncA and PZase activity testing have great potential in predicting PZA resistance.

15.
Biochem Biophys Res Commun ; 696: 149483, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38219484

RESUMEN

Highly cytotoxic maytansine derivatives are widely used in targeted tumor delivery. Structure-activity studies published earlier suggested the C9 carbinol to be a key element necessary to retain the potency. However, in 1984 a patent was published by Takeda in which the synthesis of 9-thioansamitocyn (AP3SH) was described and its activity in xenograft models was shown. In this article we summarize the results of an extended study of the anti-tumor properties of AP3SH. Like other maytansinoids, it induces apoptosis and arrests the cell cycle in the G2/M phase. It is metabolized in liver microsomes predominately by C3A4 isoform and doesn't inhibit any CYP isoforms except CYP3A4 (midazolam, IC50 7.84 µM). No hERG inhibition, CYP induction or mutagenicity in Ames tests were observed. AP3SH demonstrates high antiproliferative activity against 25 tumor cell lines and tumor growth inhibition in U937 xenograft model. Application of AP3SH as a cytotoxic payload in drug delivery system was demonstrated by us earlier.


Asunto(s)
Antineoplásicos , Maitansina , Humanos , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Línea Celular Tumoral , Ciclo Celular , División Celular
16.
Biotechnol J ; 19(1): e2300395, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38180295

RESUMEN

The mammalian cell culture process is a key step in commercial therapeutic protein production and needs to be monitored and controlled due to its complexity. Raman spectroscopy has been reported for cell culture process monitoring by analysis of many important parameters. However, studies on in-line Raman monitoring of the cell culture process were mainly conducted on small or pilot scale. Developing in-line Raman analytical methods for commercial-scale cell culture process monitoring is more challenging. In this study, an in-line Raman analytical method was developed for monitoring glucose, lactate, and viable cell density (VCD) in the Chinese hamster ovary (CHO) cell culture process during commercial production of biosimilar adalimumab (1500 L). The influence of different Raman measurement channels was considered to determine whether to merge data from different channels for model development. Raman calibration models were developed and optimized, with minimum root mean square error of prediction of 0.22 g L-1 for glucose in the range of 1.66-3.53 g L-1 , 0.08 g L-1 for lactate in the range of 0.15-1.19 g L-1 , 0.31 E6 cells mL-1 for VCD in the range of 0.96-5.68 E6 cells mL-1 on test sets. The developed analytical method can be used for cell culture process monitoring during manufacturing and meets the analytical purpose of this study. Further, the influence of the number of batches used for model calibration on model performance was also studied to determine how many batches are needed basically for method development. The proposed Raman analytical method development strategy and considerations will be useful for monitoring of similar bioprocesses.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Cricetinae , Animales , Cricetulus , Células CHO , Técnicas de Cultivo de Célula/métodos , Ácido Láctico/metabolismo , Espectrometría Raman/métodos , Glucosa/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos
17.
Mol Biol Rep ; 51(1): 84, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183522

RESUMEN

PURPOSE: Investigate the role of COX signaling in activating the PGE2-EP2 pathway. METHODS: Utilized a marine Mycobacterium infection model in zebrafish. Marine mycobacteria were stained with fluorescein isothiocyanate. The COX inhibitor indomethacin, EP2 receptor inhibitor AH6809, EP4 receptor inhibitor AH23848 and clodronate Liposomes were used to investigate the role of COX, EP2, EP4 and macrophage whether participating in combat marine mycobacterial infection. The expression level of the target gene was detected using real-time fluorescence quantitative PCR instrument. RESULTS: The findings revealed that larvae exposed to the COX inhibitor indomethacin or the EP2 receptor inhibitor AH6809 demonstrated a significantly higher mortality rate due to marine mycobacterium infection than those in the control group. Administration of exogenous prostaglandin E2 (PGE2) rescued the survival of zebrafish infected with marine mycobacteria and treated with indomethacin. Additionally, a significant reduction in survival rate was noted in macrophage-depleted zebrafish infected with marine mycobacteria. CONCLUSION: The host may combat marine mycobacterium infection via COX signaling, which activates the PGE2-EP2 pathway and mediates macrophage resistance.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium marinum , Animales , Dinoprostona , Prostaglandina-Endoperóxido Sintasas , Pez Cebra , Indometacina/farmacología
18.
J Exp Clin Cancer Res ; 43(1): 20, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229152

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) participate in cancer development via cell-to-cell communication. Long non-coding RNAs (lncRNAs), one component of EVs, can play an essential role in non-small-cell lung cancer (NSCLC) through EV-mediated delivery. METHODS: The NSCLC-associated lncRNA AL139294.1 in EVs was identified via lncRNA microarray analysis. The role of AL139294.1 in NSCLC was examined in vitro and in vivo. Confocal microscopy was used to observe the encapsulation of AL139294.1 into EVs and its transport to recipient cells. A co-culture device was used to examine the effects of transported AL139294.1 on the oncogenic behaviour of recipient cells. Dual-luciferase reporter assay was performed to verify the direct interaction of miR-204-5p with AL139294.1 and bromodomain-containing protein 4 (BRD4). AL139294.1 and miR-204-5p in EVs were quantified using quantitative polymerase chain reaction. Receiver operating characteristic analyses were conducted to evaluate the diagnostic efficiency. RESULTS: The lncRNA AL139294.1 in EVs promoted NSCLC progression in vitro and in vivo. After AL139294.1 was encapsulated into EVs and transported to recipient cells, it promoted the cells' proliferation, migration, and invasion abilities by competitively binding with miR-204-5p to regulate BRD4, leading to the activation of the Wnt and NF-κB2 pathways. Additionally, the expression of serum lncRNA AL139294.1 in EVs was increased, whereas miR-204-5p in EVs was decreased in NSCLC. High levels of lncRNA AL139294.1 and low levels of miR-204-5p in EVs were associated with advanced pathological staging, lymph node metastasis, and distant metastasis, underscoring their promising utility for distinguishing between more and less severe manifestations of the disease. CONCLUSIONS: This study reveals a novel lncRNA in EVs associated with NSCLC, namely, AL139294.1, providing valuable insights into the development of NSCLC and introducing potential diagnostic biomarkers for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Subunidad p52 de NF-kappa B , Proteínas Nucleares , Neoplasias Pulmonares/genética , Factores de Transcripción , Proliferación Celular , MicroARNs/genética , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular
19.
Anal Chim Acta ; 1288: 342143, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220278

RESUMEN

Coronary artery disease (CAD) is the leading cause of death worldwide. Earlier detection of CAD improves treatment outcomes and secondary prevention. The circulating fetuin-B protein is considered to be a promising biomarker for the early detection of CAD. However, a facile and reliable clinical test for fetuin-B is still lacking. Herein, we describe a reliable fluorescent biosensor for detecting fetuin-B in plasma that combines quantum dots-doped polystyrene nanoparticles with an immunochromatographic assay strip (QNPs-ICAS). The QNPs served as detection signals in the QNPs-ICAS sensor system, which was based on a double-antibody sandwich structure. Under optimum experimental conditions, the biosensor exhibited a broad linear range of 1-200 ng mL-1 and a low detection limit of 0.299 ng mL-1. Furthermore, the proposed immunosensor demonstrated high sensitivity, satisfactory selectivity, good reproducibility, and excellent recovery. Finally, the performance and applicability of our QNPs-based ICAS system were validated in clinical samples using a commercial ELISA kit with excellent correlations (r = 0.98451, n = 116). To conclude, the proposed sensor served as a rapid, sensitive, and accurate method for detecting fetuin-B in actual clinical samples, thereby demonstrating its potential for preliminary CAD screening and diagnosis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Puntos Cuánticos , Puntos Cuánticos/química , Fetuína-B , Reproducibilidad de los Resultados , Cromatografía de Afinidad/métodos , Inmunoensayo/métodos , Nanopartículas/química , Límite de Detección
20.
Traffic Inj Prev ; 25(2): 133-137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165202

RESUMEN

Objective: Those who study motor vehicle crashes may rely on counts of licensed drivers to estimate crash, injury, or fatality rates. These counts may be obtained from the U.S. Department of Transportation Federal Highway Administration's (FHWA) annual Highway Statistics Series or directly from state driver licensing agencies. However, previous studies have questioned the accuracy of these counts provided by the FHWA.Methods: To investigate this issue, we compared counts of licensed drivers from the FHWA and state licensing agencies in 11 states, categorized by sex and age group, from 2013 through 2017. We then assessed the impact of any potential differences by fitting two sets of Poisson regression models to estimate age- and sex-based driver fatality rate ratios. One set of models used counts from the FHWA as the offset and the other used counts from state licensing agencies.Results: Our analysis found that the differences between FHWA and state counts varied markedly. Seven states had substantial differences for at least one age group that spanned the entire study period. In several cases, these differences in license counts were large enough to produce directly contradictory driver fatality rate ratio estimates when comparing age groups.Conclusions: These findings highlight the continued concern regarding the accuracy of licensed driver counts from the FHWA and extend previous studies by illustrating the impact of using FHWA counts on statistical inference. We recommend against using these data for traffic safety research or policy evaluation. Nevertheless, we acknowledge the need for a centralized, easily accessible database for licensed driver data.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Humanos , Concesión de Licencias , Bases de Datos Factuales , Agencias Gubernamentales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA