Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Poult Sci ; 103(8): 103895, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38917609

RESUMEN

Sperm mobility (SM) is an objective index for measuring sperm motility; however, the mechanisms underlying its regulation in geese remain unclear. The present study sought to elucidate the genetic mechanism underlying SM traits in Zi geese (Anser cygnoides L.). To this end, three successive experiments were performed. In Experiment I, SM was determined in 40 ganders; the 3 ganders with the highest mobility and three with the lowest mobility were assigned to the high and low sperm mobility rank (SMR) groups, respectively. In Experiment II, the differences in fertility between the two SMR groups were assessed within two breeding flocks comprising the selected six ganders from Experiment I and 30 females (each flock had 3 ganders and 15 females). In Experiment III, the testes of the 6 ganders were harvested for histological observation and whole-transcriptome sequencing. Results revealed better fertility, well-developed seminiferous tubules, and abundant mature sperm in the high-SMR-flock compared to those of the low-SMR-flock (89 vs. 81%) (P < 0.05). Differential expression (DE) analysis identified 76 mRNAs, 344 lncRNAs, and 17 miRNAs between the SMR groups, with LOC106049708, XPNPEP3, GNB3, ADCY8, PRKAG3, oha-miR-182-5p, and ocu-miR-10b-5p identified as key mRNAs and miRNAs contributing to SM. Enrichment analysis implicated these DE RNAs in pathways related to ATP binding, cell metabolism, apelin signaling, Wnt signaling, and Adherens junctions. Additionally, competing endogenous RNA (ceRNA) networks comprising 9 DE mRNAs, 17 DE miRNAs, and 169 DE lncRNAs were constructed. Two ceRNA network pathways (LOC106049708-oha-miR-182-5p-MSTRG.2479.6 and PRKAG3-ocu-miR-10b-5p-MSTRG.9047.14) were identified as key regulators of SM in geese. These findings offer crucial insights into the identification of key genes and ceRNA pathways influencing sperm mobility in geese.

2.
Hortic Res ; 11(6): uhae104, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38883328

RESUMEN

Brassinazole resistant 1 (BZR1), a brassinosteroid (BR) signaling component, plays a pivotal role in regulating numerous specific developmental processes. Our study demonstrated that exogenous treatment with 2,4-epibrassinolide (EBR) significantly enhanced the accumulation of carotenoids and chlorophylls in Chinese kale (Brassica oleracea var. alboglabra). The underlying mechanism was deciphered through yeast one-hybrid (Y1H) and dual-luciferase (LUC) assays, whereby BoaBZR1.1 directly interacts with the promoters of BoaCRTISO and BoaPSY2, activating their expression. This effect was further validated through overexpression of BoaBZR1.1 in Chinese kale calli and plants, both of which exhibited increased carotenoid accumulation. Additionally, qPCR analysis unveiled upregulation of carotenoid and chlorophyll biosynthetic genes in the T1 generation of BoaBZR1.1-overexpressing plants. These findings underscored the significance of BoaBZR1.1-mediated BR signaling in regulating carotenoid accumulation in Chinese kale and suggested the potential for enhancing the nutritional quality of Chinese kale through genetic engineering of BoaBZR1.1.

3.
Mol Divers ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935303

RESUMEN

As mimetic compounds of the natural alkaloid mackinazolinone, forty pyrido[1,2-a]thiazolo[5,4-d] pyrimidinone were designed and synthesized from a bioisosterism approach. The structure of these compounds was confirmed through analysis using 1H NMR, 13C NMR, and HRMS techniques. All the compounds were evaluated for their anticholinesterase activities and cytotoxicity on normal cells (293 T) by the Ellman method and methyl thiazolyl tetrazolium (MTT) method in vitro. and the structure-activity relationships (SARs) were summarized. The results showed that most of the compounds effectively inhibited acetylcholinesterase (AChE) in the micromolar range with weak cytotoxicity. Compound 7o exhibited the best inhibitory activity against AChE, displaying an IC50 values of 1.67 ± 0.09 µM and an inhibitory constant Ki of 11.31 µM as a competitive inhibitor to AChE. Molecular docking indicated that compound 7o may bind to AChE via hydrogen bond and π-π stacking. Further molecular dynamics (MD) simulations indicated a relatively low binding free energy (- 27.91 kJ·mol-1) of compound 7o with AChE. In summary, the collective findings suggested that 7o was promising as a potential novel drug candidate worthy of further investigation for the treatment of Alzheimer's disease.

4.
Environ Sci Technol ; 58(23): 10275-10286, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38825773

RESUMEN

The pronounced lethality of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-quinone or 6PPDQ) toward specific salmonids, while sparing other fish species, has received considerable attention. However, the underlying cause of this species-specific toxicity remains unresolved. This study explored 6PPDQ toxicokinetics and intestinal microbiota composition in adult zebrafish during a 14-day exposure to environmentally realistic concentrations, followed by a 7-day recovery phase. Predominant accumulation occurred in the brain, intestine, and eyes, with the lowest levels in the liver. Six metabolites were found to undergo hydroxylation, with two additionally undergoing O-sulfonation. Semiquantitative analyses revealed that the predominant metabolite featured a hydroxy group situated on the phenyl ring adjacent to the quinone. This was further validated by assessing enzyme activity and determining in silico binding interactions. Notably, the binding affinity between 6PPDQ and zebrafish phase I and II enzymes exceeded that with the corresponding coho salmon enzymes by 1.04-1.53 times, suggesting a higher potential for 6PPDQ detoxification in tolerant species. Whole-genome sequencing revealed significant increases in the genera Nocardioides and Rhodococcus after exposure to 6PPDQ. Functional annotation and pathway enrichment analyses predicted that these two genera would be responsible for the biodegradation and metabolism of xenobiotics. These findings offer crucial data for comprehending 6PPDQ-induced species-specific toxicity.


Asunto(s)
Biotransformación , Microbioma Gastrointestinal , Pez Cebra , Animales , Pez Cebra/metabolismo
5.
Vaccines (Basel) ; 12(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38793720

RESUMEN

Multivalent pneumococcal vaccines have been developed successfully to combat invasive pneumococcal diseases (IPD) and reduce the associated healthcare burden. These vaccines employ pneumococcal capsular polysaccharides (PnPs), either conjugated or unconjugated, as antigens to provide serotype-specific protection. Pneumococcal capsular polysaccharides used for vaccine often contain residual levels of cell wall polysaccharides (C-Ps), which can generate a non-serotype specific immune response and complicate the desired serotype-specific immunity. Therefore, the C-P level in a pneumococcal vaccine needs to be controlled in the vaccine process and the anti C-P responses need to be dialed out in clinical assays. Currently, two types of cell-wall polysaccharide structures have been identified: a mono-phosphocholine substituted cell-wall polysaccharide C-Ps1 and a di-phosphocholine substituted C-Ps2 structure. In our effort to develop a next-generation novel pneumococcal conjugate vaccine (PCV), we have generated a monoclonal antibody (mAb) specific to cell-wall polysaccharide C-Ps2 structure. An antibody-enhanced HPLC assay (AE-HPLC) has been established for serotype-specific quantification of pneumococcal polysaccharides in our lab. With the new anti C-Ps2 mAb, we herein extend the AE-HPLC assay to the quantification and identification of C-Ps2 species in pneumococcal polysaccharides used for vaccines.

6.
Acta Otolaryngol ; 144(3): 159-167, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38742731

RESUMEN

BACKGROUND: In temporal bone specimens from long-term cochlear implant users, foreign body response within the cochlea has been demonstrated. However, how hearing changes after implantation and fibrosis progresses within the cochlea is unknown. OBJECTIVES: To investigate the short-term dynamic changes in hearing and cochlear histopathology in minipigs after electrode array insertion. MATERIAL AND METHODS: Twelve minipigs were selected for electrode array insertion (EAI) and the Control. Hearing tests were performed preoperatively and on 0, 7, 14, and 28 day(s) postoperatively, and cochlear histopathology was performed after the hearing tests on 7, 14, and 28 days after surgery. RESULTS: Electrode array insertion had a significant effect for the frequency range tested (1 kHz-20kHz). Exudation was evident one week after electrode array insertion; at four weeks postoperatively, a fibrous sheath formed around the electrode. At each time point, the endolymphatic hydrops was found; no significant changes in the morphology and packing density of the spiral ganglion neurons were observed. CONCLUSIONS AND SIGNIFICANCE: The effect of electrode array insertion on hearing and intracochlear fibrosis was significant. The process of fibrosis and endolymphatic hydrops seemed to not correlate with the degree of hearing loss, nor did it affect spiral ganglion neuron integrity in the 4-week postoperative period.


Asunto(s)
Cóclea , Implantación Coclear , Implantes Cocleares , Porcinos Enanos , Animales , Porcinos , Cóclea/patología , Implantes Cocleares/efectos adversos , Implantación Coclear/métodos , Implantación Coclear/efectos adversos , Fibrosis , Electrodos Implantados/efectos adversos
7.
Int J Med Sci ; 21(6): 1003-1015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774754

RESUMEN

Objective: Asthma is a chronic heterogeneous airway disease, and imbalanced T-helper type 1 (Th1) and Th2 cell-mediated inflammation contribute to its pathogenesis. Although it has been suggested that androgen and estrogen were involved in development of asthma, the underlying mechanisms remained largely unclear. Studies have demonstrated that Runx3 could promote naive CD4+ T cells to differentiate into Th1 cells. Hence, our study aimed to explore the potential regulatory mechanism of androgen and estrogen on asthma via modulating Runx3. Methods: First, clinical assessments and pulmonary function tests were conducted on 35 asthma patients and 24 healthy controls. The concentrations of androgen, estrogen, and androgen estrogen ratios were assessed in peripheral blood samples of asthma patients and healthy controls. Then, a murine asthma model was established to explore the effects of estrogen and androgen (alone or in combination) on asthma. Third, an in vitro assay was used to explore the mechanism of combination of androgen and estrogen in asthma. Results: We observed decreased androgen and increased estrogen levels in asthma patients compared with healthy controls. In mice with experimental asthma, there were increased serum concentrations of estrogen and decreased serum concentrations of androgen, intervention with combination of androgen and estrogen alleviated airway inflammations, increased Runx3 expressions and elevated Th1 differentiation. In CD4+ T cells co-cultured with bronchial epithelial cells (BECs), treatment with androgen plus estrogen combination promoted Th1 differentiation, which was mitigated by Runx3 knockdown in BECs and enhanced by Runx3 overexpression. Conclusion: These findings suggest that androgen estrogen combination modulate the Th1/Th2 balance via regulating the expression of Runx3 in BECs, thereby providing experimental evidence supporting androgen and estrogen combination as a novel therapy for asthma.


Asunto(s)
Andrógenos , Asma , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Estrógenos , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Andrógenos/sangre , Asma/tratamiento farmacológico , Asma/inmunología , Asma/sangre , Estudios de Casos y Controles , Diferenciación Celular/efectos de los fármacos , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Células TH1/inmunología , Células TH1/efectos de los fármacos , Células Th2/inmunología , Células Th2/efectos de los fármacos
8.
Heliyon ; 10(7): e28884, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601672

RESUMEN

Objective: Asthma, a chronic inflammatory disease in which type 2 T helper cells (Th2) play a causative role in the development of T2 asthma. N6-methyladenosine (m6A) modification, an mRNA modification, and methyltransferase-like 3 (METTL3) is involved in the development of T2 asthma by inhibiting Th2 cell differentiation. Sex determining region Y-box protein 5 (SOX5) is involved in regulating T cell differentiation, but its role in T2 asthma was unclear. The objective of this study was to explore the role of METTL3 and SOX5 in T2 asthma and whether there is an interaction between the two. Materials and methods: Adults diagnosed with T2 asthma (n = 14) underwent clinical information collection and pulmonary function tests. In vivo and in vitro T2 asthma models were established using female C57BL/6 mice and human bronchial epithelial cells (HBE). The expressions of METTL3 and SOX5 were detected by Western blot and qRT-PCR and Western blot. Th2 cell differentiation was determined by flow cytometry and IL-4 level was detected by ELISA. m6A methylation level was determined by m6A quantitative assay. The relationship between METTL3 expression and clinical parameters was determined by Spearman rank correlation analysis. The function of METTL3 and SOX5 genes in asthma was investigated in vitro and in vivo. The RNA immunoprecipitation assay detected the specific interaction between METTL3 and SOX5. Results: Patients with T2 asthma displayed lower METTL3 levels compared to healthy controls. Within this group, a negative correlation was observed between METTL3 and Th2 cells, while a positive correlation was noted between METTL3 and clinical parameters as well as Th1 cells. In both in vitro and in vivo models representing T2 asthma, METTL3 levels decreased significantly, while SOX5 levels showed the opposite trend. Overexpression of METTL3 gene in HBE cells significantly inhibited Th2 cell differentiation and increased m6A methylation activity. From a mechanism perspective, low METTL3 negatively regulates SOX5 expression through m6A modification dependence, while high SOX5 expression is positively associated with T2 asthma severity. Cell transfection experiments confirmed that METTL3 regulates Th2 cell differentiation and IL-4 release through SOX5. Conclusions: Overall, our results indicate that METTL3 alleviates Th2 cell differentiation in T2 asthma by modulating the m6A methylation activity of SOX5 in bronchial epithelial cells. This mechanism could potentially serve as a target for the prevention and management of T2 asthma.

9.
J Pharm Pharmacol ; 76(7): 851-860, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38625054

RESUMEN

OBJECTIVES: The study aimed to investigate the protective effects of dexmedetomidine (DEX) on renal injury caused by acute stress in rats and explore the protective pathways of DEX on rat kidneys in terms of oxidative stress. METHODS: An acute restraint stress model was utilized, where rats were restrained for 3 hours after a 15-minute swim. Biochemical tests and histopathological sections were conducted to evaluate renal function, along with the measurement of oxidative stress and related pathway proteins. KEY FINDINGS: The open-field experiments validated the successful establishment of the acute stress model. Acute stress-induced renal injury led to increased NADPH oxidase 4 (NOX4) protein expression and decreased expression levels of nuclear transcription factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1). Following DEX treatment, there was a significant reduction in renal NOX4 expression. The DEX-treated group exhibited normalized renal biochemical results and less damage observed in pathological sections compared to the acute stress group. CONCLUSIONS: The findings suggest that DEX treatment during acute stress can impact the NOX4/Nrf2/HO-1/NQO1 signaling pathway and inhibit oxidative stress, thereby preventing acute stress-induced kidney injury. Additionally, DEX shows promise for clinical applications in stress syndromes.


Asunto(s)
Antioxidantes , Dexmedetomidina , Riñón , NAD(P)H Deshidrogenasa (Quinona) , NADPH Oxidasa 4 , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal , Animales , NADPH Oxidasa 4/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Dexmedetomidina/farmacología , Estrés Oxidativo/efectos de los fármacos , Masculino , Antioxidantes/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratas , Transducción de Señal/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Hemo-Oxigenasa 1/metabolismo , Modelos Animales de Enfermedad , Hemo Oxigenasa (Desciclizante)
10.
Water Res ; 256: 121643, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663211

RESUMEN

Tire wear particles (TWPs) enter aquatic ecosystems through various pathways, such as rainwater and urban runoff. Additives in TWPs can harm aquatic organisms in these ecosystems. Therefore, it is essential to investigate their toxicity to aquatic organisms. In our study, we initially recorded the median effective concentrations of 21 TWP-derived compounds on Chlorella vulgaris growth, ranging from 0.04 to 8.60 mg/L. Subsequently, through an extensive review of the literature, we incorporated 112 compounds with specific toxicity endpoints to construct the QSAR model using genetic algorithm and multiple linear regression techniques, followed by the construction of the consensus model and the quantitative read-across structure-activity relationship (q-RASAR) model. Meanwhile, we employed rigorous internal and external validation measures to assess the performance of the model. The results indicated that the developed q-RASAR model exhibited strong adaptation, robustness, and reliable prediction, with q-RASAR indicators of Q2LOO = 0.7673, R2tr = 0.8079, R2test = 0.8610, Q2Fn = 0.8285-0.8614, and CCCtest = 0.9222. Based on an external dataset containing 128 emerging TWP-derived compounds, the model's applicability domain coverage was 90.6 %. The q-RASAR model predicted that the structure of diphenylamine was associated with higher toxicity, possibly liked to the SpMax2_Bhm and LogBCF descriptors. The established model reliably provides prediction and fills a critical data gap. These findings highlight the potential risks posed by emerging TWP-derived compounds to aquatic organisms.


Asunto(s)
Chlorella vulgaris , Relación Estructura-Actividad Cuantitativa , Chlorella vulgaris/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química
11.
Clin Oral Investig ; 28(5): 263, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642188

RESUMEN

OBJECTIVES: The aim of our study is to explore the transcriptional and microbial characteristics of head and neck cancer's immune phenotypes using a multi-omics approach. MATERIALS AND METHODS: Employing TCGA data, we analyzed head and neck squamous cell carcinoma (HNSCC) immune cells with CIBERSORT and identified differentially expressed genes using DESeq2. Microbial profiles, obtained from the TCMA database, were analyzed using LEfSe algorithm to identify differential microbes in immune cell infiltration (ICI) subgroups. Random Forest algorithm and deep neural network (DNN) were employed to select microbial features and developed a prognosis model. RESULTS: We categorized HNSCC into three immune subtypes, finding ICI-2 with the worst prognosis and distinct microbial diversity. Our immune-related microbiome (IRM) model outperformed the TNM staging model in predicting survival, linking higher IRM model scores with poorer prognosis, and demonstrating clinical utility over TNM staging. Patients categorized as low-risk by the IRM model showed higher sensitivity to cisplatin and sorafenib treatments. CONCLUSIONS: This study offers a comprehensive exploration of the ICI landscape in HNSCC. We provide a detailed scenario of immune regulation in HNSCC and report a correlation between differing ICI patterns, intratumor microbiome, and prognosis. This research aids in identifying prime candidates for optimizing treatment strategies in HNSCC. CLINICAL RELEVANCE: This study revealed the microbial signatures associated with immunophenotyping of HNSCC and further found the microbial signatures associated with prognosis. The prognostic model based on IRM microbes is helpful for early prediction of patient prognosis and assisting clinical decision-making.


Asunto(s)
Neoplasias de Cabeza y Cuello , Microbiota , Humanos , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello , Multiómica
12.
Sci Total Environ ; 926: 171803, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508264

RESUMEN

Urban stormwater is an alternative water source used to mitigate water resource shortages, and ensuring the safety of stormwater reuse is essential. An in-depth understanding of both individual pollutant concentrations/loads in stormwater and holistic stormwater quality can be used to comprehensively evaluate how safely stormwater can be reused. The toxicity test takes all pollutants present in water samples into account, and the results reflect the integrated effect of these pollutants. In this study, the influence of urban stormwater sourced from different land uses on microalgae (Chlorella pyrenoidosa) and the possible toxicity mechanisms were investigated. The results showed that urban stormwater, particularly residential road stormwater, significantly inhibited microalgal growth. The chlorophyll contents of microalgae exposed to residential road stormwater were relatively lower, while the corresponding values were relatively higher for microalgae exposed to grassland road stormwater. Additionally, the antioxidant-related metabolism of microalgae could be dysregulated due to exposure to urban stormwater. A possible toxicity mechanism is that urban stormwater influences metabolic pathways related to chlorophyll synthesis and further hinders photosynthesis and hence microalgal growth. To resist oxidative stress and maintain regular microalgal cell activities, the ribosome metabolism pathway was upregulated. The research results contribute to elucidating the toxicity effects of urban stormwater and hence provide useful insight for ensuring the safety of stormwater reuse. It is also worth noting that the study outcomes can only represent the influence of land use on stormwater toxicity, while the impacts of other factors (particularly rainfall-runoff characteristics) have not been considered. Therefore, the consideration of all influential factors of stormwater is strongly recommended to generate more robust results in the future and provide more effective guidance for real practices related to stormwater reuse safety.


Asunto(s)
Chlorella , Contaminantes Ambientales , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Lluvia , Contaminantes Ambientales/toxicidad , Agua , Clorofila
13.
J Int Adv Otol ; 20(1): 26-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38454285

RESUMEN

BACKGROUND: The precise treatment of iatrogenic cerebrospinal fluid (CSF) otorhinorrhea has been poorly studied. The purpose of the study was to investigate the clinical manifestation, surgical results, and management of CSF leak. METHODS: Electronic medical record database of iatrogenic CSF leaks after erebellopontine angle(CPA) surgery from 2019 to 2022 was retrospectively analyzed. Three patients returned to the hospital with the complication of CSF leak. After failed attempts of conservative strategies or reverse surgical repair, adipose tissue was applied to the mastoid cracks repair. RESULTS: With the techniques described above, the CSF leaks were successfully settled. The identified patients were observed for at least 10 months. and there was no recurrence or other complications. CONCLUSION: Conservative treatment and initial surgical methods for occult postoperative CSF leaks are prone to delay effective results, particularly in patients with well-evaporated temporal bone. This complication can be minimized with transmastoid closure utilizing autologous fat.


Asunto(s)
Neuroma Acústico , Humanos , Neuroma Acústico/cirugía , Neuroma Acústico/complicaciones , Estudios Retrospectivos , Pérdida de Líquido Cefalorraquídeo/etiología , Pérdida de Líquido Cefalorraquídeo/cirugía , Hueso Temporal , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía , Enfermedad Iatrogénica , Resultado del Tratamiento
14.
J Pharm Biomed Anal ; 243: 116063, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479305

RESUMEN

BACKGROUND: Xiao-Qing-Long-Tang (XQLT), a classical Chinese herbal medicine formula, has been extensively used for allergic asthma treatment. However, there is limited research on its anti-inflammatory effects and mechanisms specifically in neutrophilic asthma (NA). PURPOSE: This study aims to investigate the potential therapeutic effects of XQLT against NA using a combination of network pharmacology and experimental validation. STUDY DESIGN: By utilizing traditional Chinese medicine and disease databases, we constructed an XQLT-asthma network to identify potential targets of XQLT for NA. In the experimental phase, we utilized an ovalbumin (OVA)/lipopolysaccharide (LPS)-induced model for neutrophilic asthma and examined the therapeutic effects of XQLT. RESULTS: Our research identified 174 bioactive components within XQLT and obtained 140 target genes of XQLT against asthma. Functional enrichment analysis revealed that these target genes were primarily associated with inflammation and cytokines. In the experimental validation, mice induced with OVA-LPS showcased eosinophilic and neutrophilic cell infiltration in peri-bronchial areas, elevated levels of IL-4 and IL-17 in both serum and lung, increased percentages of Th2 and Th17 cells in the spleen, as well as elevated levels of CD11b+ and CD103+ dendritic cells (DCs) within the lung. Treatment with XQLT effectively reduced IL-4 and IL-17 levels, decreased the percentages of Th2, Th17, CD11b+, and CD103+ DCs, and improved inflammatory cell infiltrations in lung tissues. These findings serve as a foundation for the potential clinical application of XQLT in neutrophilic asthma.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Interleucina-17 , Ratones , Animales , Interleucina-17/farmacología , Interleucina-17/uso terapéutico , Interleucina-4/farmacología , Interleucina-4/uso terapéutico , Lipopolisacáridos/farmacología , Lipopolisacáridos/uso terapéutico , Farmacología en Red , Asma/tratamiento farmacológico , Pulmón , Citocinas , Ovalbúmina , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Líquido del Lavado Bronquioalveolar
15.
BMC Genomics ; 25(1): 213, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413848

RESUMEN

BACKGROUND: The stria vascularis (SV), located in the lateral wall of the cochlea, maintains cochlear fluid homeostasis and mechanoelectrical transduction (MET) activity required for sound wave conduction. The pathogenesis of a number of human inheritable deafness syndromes, age related hearing loss, drug-induced ototoxicity and noise-induced hearing loss results from the morphological changes and functional impairments in the development of the SV. In this study, we investigate the implications of intercellular communication within the SV in the pathogenesis of sensorineural hearing loss (SNHL). We aim to identify commonly regulated signaling pathways using publicly available single-cell transcriptomic sequencing (scRNA-seq) datasets. METHODS: We analyzed scRNA-seq data, which was derived from studying the cochlear SV in mice with SNHL compared to normal adult mice. After quality control and filtering, we obtained the major cellular components of the mouse cochlear SV and integrated the data. Using Seurat's FindAllMarkers and FindMarkers packages, we searched for novel conservative genes and differential genes. We employed KEGG and GSEA to identify molecular pathways that are commonly altered among different types of SNHL. We utilized pySCENIC to discover new specific regulatory factors in SV subpopulation cells. With the help of CellChat, we identified changes in subpopulation cells showing similar trends across different SNHL types and their alterations in intercellular communication pathways. RESULTS: Through the analysis of the integrated data, we discovered new conserved genes to SV specific cells and identified common downregulated pathways in three types of SNHL. The enriched genes for these pathways showing similar trends are primarily associated with the Electron Transport Chain, related to mitochondrial energy metabolism. Using the CellChat package, we further found that there are shared pathways in the incoming signaling of specific intermediate cells in SNHL, and these pathways have common upstream regulatory transcription factor of Nfe2l2. Combining the results from pySCENIC and CellChat, we predicted the transcription factor Nfe2l2 as an upstream regulatory factor for multiple shared cellular pathways in IC. Additionally, it serves as an upstream factor for several genes within the Electron Transport Chain. CONCLUSION: Our bioinformatics analysis has revealed that downregulation of the mitochondrial electron transport chain have been observed in various conditions of SNHL. E2f1, Esrrb, Runx1, Yy1, and Gata2 could serve as novel important common TFs regulating the electron transport chain. Adm has emerged as a potential new marker gene for intermediate cells, while Itgb5 and Tesc show promise as potential new marker genes for marginal cells in the SV. These findings offer a new perspective on SV lesions in SNHL and provide additional theoretical evidence for the same drug treatment and prevention of different pathologies of SNHL.


Asunto(s)
Pérdida Auditiva Sensorineural , Estría Vascular , Adulto , Humanos , Animales , Ratones , Estría Vascular/metabolismo , Estría Vascular/patología , Análisis de Expresión Génica de una Sola Célula , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Cóclea , Factores de Transcripción/metabolismo
16.
Sci Bull (Beijing) ; 69(5): 621-635, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38185590

RESUMEN

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ) has attracted significant attention due to its highly acute lethality to sensitive salmonids. However, studies investigating the mechanisms underlying its acute toxicity have been lacking. In this work, we demonstrated the sensitivity of rainbow trout to 6PPDQ-induced mortality. Moribund trout exhibited significantly higher brain concentrations of 6PPDQ compared to surviving trout. In an in vitro model using human brain microvascular endothelial cells, 6PPDQ can penetrate the blood-brain barrier and enhance blood-brain barrier permeability without compromising cell viability. The time spent in the top of the tank increased with rising 6PPDQ concentrations, as indicated by locomotion behavior tests. Furthermore, 6PPDQ influenced neurotransmitter levels and mRNA expression of neurotransmission-related genes in the brain and exhibited strong binding affinity to target neurotransmission-related proteins using computational simulations. The integrated biomarker response value associated with neurotoxicity showed a positive linear correlation with trout mortality. These findings significantly contribute to filling the knowledge gap between neurological impairments and apical outcomes, including behavioral effects and mortality, induced by 6PPDQ.


Asunto(s)
Oncorhynchus mykiss , Animales , Humanos , Oncorhynchus mykiss/fisiología , Goma , Células Endoteliales
17.
Front Aging Neurosci ; 16: 1309115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282692

RESUMEN

Objective: To reveal the relationship between ARHL and ferroptosis and screen ferroptosis-related genes (FRGs) in ARHL. Methods: Bioinformatics were used to analyze the hub genes and molecular mechanism of ferroptosis in the aging cochleae. Senescence ß-galactosidase staining, iron content detection, and micro malondialdehyde (MDA) assay kits were used to measure ß-galactosidase activity, and expression of Fe2+ and MDA, respectively. Fluorescence microscope was used for immunofluorescence assay of hub genes. Western blot was used to verify the expression of hub genes in HEI-OC1 cells, cochlear explants, and cochleae of C57BL/6J mice. Data were expressed as mean ± SD of at least three independent experiments. Results: The analysis of bioinformatics confirmed that lactotransferrin (LTF) is the hub gene and CEBPA-miR-130b-LTF network is the molecular mechanism for cochlear ferroptosis. Compared with the control group, the experiments proved that the indicators of ferroptosis, including Fe2+, MDA, and LTF were differentially expressed in aging HEI-OC1 cells, aging cochlear explants, and aging cochleae. Conclusion: These results demonstrate that ferroptosis plays an important role in ARHL, and LTF is a potential therapeutic target for ARHL via regulating cochlear ferroptosis.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38290937

RESUMEN

OBJECTIVE: Obstructive sleep apnea (OSA) is associated with impaired cognitive function. Exosomes are secreted by most cells and play a role in OSA-associated cognitive impairment (CI). The aim of this study was to investigate whether OSA plasma-derived exosomes cause CI through hippocampal neuronal cell pyroptosis, and to identify exosomal miRNAs in OSA plasma-derived. MATERIALS AND METHODS: Plasma-derived exosomes were isolated from patients with severe OSA and healthy comparisons. Daytime sleepiness and cognitive function were assessed using the Epworth Sleepiness Scale (ESS) and the Beijing version of the Montreal Cognitive Assessment Scale (MoCA). Exosomes were coincubated with mouse hippocampal neurons (HT22) cells to evaluate the effect of exosomes on pyroptosis and inflammation of HT22 cells. Meanwhile, exosomes were injected into C57BL/6 male mice via caudal vein, and then morris water maze was used to evaluate the spatial learning and memory ability of the mice, so as to observe the effects of exosomes on the cognitive function of the mice. Western blot and qRT-PCR were used to detect the expressions of Gasdermin D (GSDMD) and Caspase-1 to evaluate the pyroptosis level. The expression of IL-1ß, IL-6, IL-18 and TNF-α was detected by qRT-PCR to assess the level of inflammation. Correlations of GSDMD and Caspase-1 expression with clinical parameters were evaluated using Spearman's rank correlation analysis. In addition, plasma exosome miRNAs profile was identified, followed by Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. RESULTS: Compared to healthy comparisons, body mass index (BMI), apnea-hypopnea index (AHI), oxygen desaturation index (ODI), and ESS scores were increased in patients with severe OSA, while lowest oxygen saturation during sleep (LSaO2), mean oxygen saturation during sleep (MSaO2) and MoCA scores were decreased. Compared to the PBS group (NC) and the healthy comparison plasma-derived exosomes (NC-EXOS), the levels of GSDMD and Caspase-1 and IL-1ß, IL-6, IL-18 and TNF-α were increased significantly in the severe OSA plasma-derived exosomes (OSA-EXOS) coincubated with HT22 cells. Compared to the NC and NC-EXOS groups, the learning and memory ability of mice injected with OSA-EXOS was decreased, and the expression of GSDMD and Caspase-1 in hippocampus were significantly increased, along with the levels of IL-1ß, IL-6, IL-18 and TNF-α. Spearman correlation analysis found that clinical AHI in HCs and severe OSA patients was positively correlated with GSDMD and Caspase-1 in HT22 cells from NC-EXOS and OSA-EXOS groups, while negatively correlated with clinical MoCA. At the same time, clinical MoCA in HCs and severe OSA patients was negatively correlated with GSDMD and Caspase-1 in HT22 cells from NC-EXOS and OSA-EXOS groups. A unique exosomal miRNAs profile was identified in OSA-EXOS group compared to the NC-EXOS group, in which 28 miRNAs were regulated and several KEGG and GO pathways were identified. CONCLUSIONS: The results of this study show a hypothesis that plasma-derived exosomes from severe OSA patients promote pyroptosis and increased expression of inflammatory factors in vivo and in vitro, and lead to impaired cognitive function in mice, suggesting that OSA-EXOS can mediate CI through pyroptosis of hippocampal neurons. In addition, exosome cargo from OSA-EXOS showed a unique miRNAs profile compared to NC-EXOS, suggesting that plasma exosome associated miRNAs may reflect the differential profile of OSA related diseases, such as CI.

19.
Int Immunopharmacol ; 127: 111350, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38104368

RESUMEN

Neuroinflammation and oxidative stress induced by intermittent hypoxia (IH) are associated with cognitive dysfunction in patients with obstructive sleep apnea (OSA). Recently, TAR DNA-binding protein 43 (TDP-43), histone deacetylase 6 (HDAC6), and peroxiredoxin 1 (Prdx1) have been reported to be involved in cognitive impairment in many degenerative diseases; however, the underlying mechanisms remain unclear. In the present study, subjects underwent polysomnography to diagnose OSA. Cognitive function was evaluated using the Montreal Cognitive Assessment (MoCA) and peripheral blood samples were collected. HMC3 cells were treated with lipopolysaccharide (LPS) to mimic in vitro neuroinflammation. Western blotting was used to assess protein expression and ELISA to assess inflammation and oxidative stress levels. Participants were divided into three groups: healthy control (n = 20); mild to moderate OSA (n = 20); and severe OSA (n = 20). The MoCA scores in mild-moderate OSA and severe OSA were lower than those in healthy controls. Continuous positive airway pressure therapy was found to be effective for cognitive impairment in subjects with severe OSA (24.70 ± 1.81). Expression of TDP-43 and HDAC6 was increased in subjects with OSA, whereas Prdx1 expression was decreased. Alterations in these proteins were partially reversed after 12 weeks of CPAP treatment. Protein expression of TDP-43 and HDAC6 was negatively correlated with MoCA scores in patients with OSA, while Prdx1 expression exhibited the opposite trend. In LPS-treated HMC3 cells, TDP-43 and HDAC6 were upregulated, whereas Prdx1 expression was reduced. TDP-43 influenced the expression of Prdx1 by regulating HDAC6, and inflammation and oxidative stress varied with the expression of TDP-43. When a specific inhibitor of HDAC6 was used, LPS-induced inflammation and oxidative stress were alleviated by an elevated level of Prdx1. In summary, findings of the present study suggest that TDP-43 influenced Prdx1 by regulating HDAC6 expression and promoting neuroinflammation and oxidative stress. This process may be involved in the cognitive impairment experienced by patients with OSA and may provide potential therapeutic targets.


Asunto(s)
Disfunción Cognitiva , Apnea Obstructiva del Sueño , Humanos , Enfermedades Neuroinflamatorias , Histona Desacetilasa 6/metabolismo , Lipopolisacáridos/metabolismo , Disfunción Cognitiva/terapia , Inflamación/complicaciones , Estrés Oxidativo , Transducción de Señal , Proteínas de Unión al ADN/metabolismo
20.
Nat Commun ; 14(1): 8130, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065957

RESUMEN

The presence of a static tilt between the inner core and mantle is an ongoing discussion encompassing the geodynamic state of the inner core. Here, we confirm an approximate 8.5 yr signal in polar motion is the inner core wobble (ICW), and find that the ICW is also contained in the length-of-day variations of the Earth's rotation. Based on the determined amplitudes of the ICW and its good phase consistency in both polar motion and the length-of-day variations, we infer that there must be a static tilt angle θ between the inner core and the mantle of about 0.17 ± 0.03°, most likely towards ~90°W relative to the mantle, which is two orders of magnitude lower than the 10° assumed in certain geodynamic research. This tilt is consistent with the assumption that the average density in the northwestern hemisphere of the inner core should be greater than that in the other regions. Further, the observed ICW period (8.5 ± 0.2 yr) suggests a 0.52 ± 0.05 g/cm3 density jump at the inner core boundary.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...