RESUMEN
Recently, indoor positioning has been one of the hot topics in the field of navigation and positioning. Among different solutions on indoor positioning, positioning with acoustic signals has its promise due to its relatively high accuracy in the line of sight scenarios, low cost, and ease of being implemented in smartphones. In this work, a novel acoustic positioning method, called RATBILS, is proposed, in which encoded chirp acoustic signals are modulated and transmitted by different acoustic base stations. The smartphones receive the signals and perform the following three steps: (1) preprocessing; (2) time of arrival (TOA) estimation; and (3) time difference of arrival (TDOA) calculation and location estimation. In the preprocessing stage, we use band pass filters to filter out low-frequency noise from the environment. At the same time, we perform a signal decoding function in order to lock onto the positioning source. In the TOA estimation stage, we conduct both coarse and fine detection to enhance the accuracy and robustness of TOA estimation. The primary goal of coarse detection is to establish a noise range for fine detection. The main objective of fine detection is to emphasize the intensity of the first arrival diameter and resistance with multipath and non-line-of-sight (NLOS) caused by human body obstruction. In the TDOA calculation and location estimation stage, we estimate the TDOA based on the TOA estimation and then use the TDOA results for position estimation. In order to evaluate the performance of the proposed RATBILS system, two indoor field tests are carried out. The test results show that the RATBILS system achieves a positioning error of 0.23 m at 92% in region 1 of scene 1 and is superior to the traditional threshold method. The RATBILS system achieves a positioning error of 0.56 m at 92% in region 2 of scene 1 and is superior to the traditional threshold method. In scene 2, the maximum average positioning error was 1.26 m, which is better than the 3.33 m and 3.87 m of the two traditional threshold methods.
RESUMEN
Recently, our group developed a synergistic brain drug delivery method to achieve simultaneous transcranial hyperthermia and localized blood-brain barrier opening via MR-guided focused ultrasound (MRgFUS). In a rodent model, we demonstrated that the ultrasound power required for transcranial MRgFUS hyperthermia was significantly reduced by injecting microbubbles (MBs). However, the specific mechanisms underlying the power reduction caused by MBs remain unclear. The present study aims to elucidate the mechanisms of MB-enhanced transcranial MRgFUS hyperthermia through numerical studies using the finite element method. The microbubble acoustic emission (MAE) and the viscous dissipation (VD) were hypothesized to be the specific mechanisms. Acoustic wave propagation was used to model the FUS propagation in the brain tissue, and a bubble dynamics equation for describing the dynamics of MBs with small shell thickness was used to model the MB oscillation under FUS exposures. A modified bioheat transfer equation was used to model the temperature in the rodent brain with different heat sources. A theoretical model was used to estimate the bubble shell's surface tension, elasticity, and viscosity losses. The simulation reveals that MAE and VD caused a 40.5% and 52.3% additional temperature rise, respectively. Compared with FUS only, MBs caused a 64.0% temperature increase, which is consistent with our previous animal experiments. Our investigation showed that MAE and VD are the main mechanisms of MB-enhanced transcranial MRgFUS hyperthermia.
Asunto(s)
Encéfalo , Análisis de Elementos Finitos , Hipertermia Inducida , Imagen por Resonancia Magnética , Microburbujas , Encéfalo/diagnóstico por imagen , Hipertermia Inducida/métodos , Animales , ViscosidadRESUMEN
Solid-state lithium metal batteries (SSLMBs) offer numerous advantages in terms of safety and theoretical specific energy density. However, their main components namely lithium metal anode, solid-state electrolyte, and cathode, show chemical instability when exposed to humid air, which results in low capacities and poor cycling stability. Recent studies have shown that bioinspired hydrophobic materials with low specific surface energies can protect battery components from corrosion caused by humid air. Air-stable inorganic materials that densely cover the surface of battery components can also provide protection, which improves the storage stability of the battery components, broadens their processing conditions, and ultimately decreases their processing costs while enhancing their safety. In this review, the mechanism behind the surface structural degradation of battery components and the resulting consequences are discussed. Subsequently, recent strategies are reviewed to address this issue from the perspectives of lithium metal anodes, solid-state electrolytes, and cathodes. Finally, a brief conclusion is provided on the current strategies and fabrication suggestions for future safe air-stable SSLMBs.
RESUMEN
Enhancing the toughness of biodegradable polylactic acid (PLA) blends with minimal filler content meanwhile preserving their thermomechanical properties remains a highly desirable objective. Here, through a simple in situ mixing of PLA with cellulose nanocrystals (CNC) and cellulose nanocrystal nanofluids (CNCfs), the electrostatic interaction between CNCfs (+22.6 mv) and CNC (-9.07 mv) formed petal-like hybridized particles with CNCfs as the core and CNC particles as the outer layer. The rheological tests indicated a significant reduction in the zero-shear viscosity and storage modulus of PLA/CNCfs blends, while the viscosity of PLA/CNCfs@CNC slightly decreased but retained its storage modulus compared to pure PLA. The optimized PLA/CNCfs@CNC blends not only exhibited excellent melt processing performance, but also increased the elongation at break (increased by 184 % and 375 % at 8 °C and 45 °C, respectively) and enhanced toughness remarkably (increased by 3.5 and 3.3-fold at 8 °C and 45 °C, respectively) meantime retaining the modulus with 1 GPa. The addition of CNCfs@CNC hardly affects the glass transition temperature and thermo-mechanical properties of PLA. The dielectric properties of PLA/CNCfs1.0/CNC2.0 blends were maximized at 1000 Hz, reaching a value of 21, which can be attributed to the synergistic effect of multilayer interfacial polarization.
Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Poliésteres/química , Temperatura de Transición , Nanopartículas/químicaRESUMEN
Human telomeres are linked to genetic instability and a higher risk of developing cancer. Therefore, to improve the dismal prognosis of pancreatic cancer patients, a thorough investigation of the association between telomere-related genes and pancreatic cancer is required. Combat from the R package "SVA" was performed to correct the batch effects between the TCGA-PAAD and GTEx datasets. After differentially expressed genes (DEGs) were assessed, we constructed a prognostic risk model through univariate Cox regression, LASSO-Cox regression, and multivariate Cox regression analysis. Data from the ICGC, GSE62452, GSE71729, and GSE78229 cohorts were used as test cohorts for validating the prognostic signature. The major impact of the signature on the tumor microenvironment and its response to immune checkpoint drugs was also evaluated. Finally, PAAD tissue microarrays were fabricated and immunohistochemistry was performed to explore the expression of this signature in clinical samples. After calculating 502 telomere-associated DEGs, we constructed a three-gene prognostic signature (DSG2, LDHA, and RACGAP1) that can be effectively applied to the prognostic classification of pancreatic cancer patients in multiple datasets, including TCGA, ICGC, GSE62452, GSE71729, and GSE78229 cohorts. In addition, we have screened a variety of tumor-sensitive drugs targeting this signature. Finally, we also found that protein levels of DSG2, LDHA, and RACGAP1 were upregulated in pancreatic cancer tissues compared to normal tissues by immunohistochemistry analysis. We established and validated a telomere gene-related prognostic signature for pancreatic cancer and confirmed the upregulation of DSG2, LDHA, and RACGAP1 expression in clinical samples, which may provide new ideas for individualized immunotherapy.
Asunto(s)
Neoplasias Pancreáticas , Humanos , Pronóstico , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Telómero/genética , Biomarcadores , Microambiente Tumoral/genética , Neoplasias PancreáticasRESUMEN
Li/CFx battery is one of the most promising lithium primary batteries (LPBs) which yields the highest energy density but with poor rate capability. This Achilles'' heel hinders the large-scale applications of Li/CFx batteries. This work first reports a facile chemical modification method of CFx with δ-MnO2 . Having benefited from the chemical bonding, the electrochemical performance at high-rate discharge is remarkably enhanced without compromising the specific capacity. The coin cells exhibit an energy density of 1.94 × 103 Wh kg-1 at 0.2 C, which is approaching the theoretical energy density of commercial fluorinated graphite (2.07 × 103 Wh kg-1 ). A power density of 5.49 × 104 W kg-1 at 40 C associated with an energy density of 4.39 × 102 Wh kg-1 , which is among the highest value of Li/CFx batteries, are obtained. Besides, the punch batteries achieve an ultrahigh power density of 4.39 × 104 W kg-1 with an energy density of 7.60 × 102 Wh kg-1 at 30 C. The intrinsic reasons for this outstanding electrochemical performance, which are known as the fast Li+ diffusion kinetics guided by thin δ-MnO2 flakes and the low formation energy barrier caused by chemical bonding, are explored by the galvanostatic intermittent titration technique (GITT) and theoretical calculations.
RESUMEN
Background: Growing evidence suggests that infiltrating neutrophils are key players in hepatocellular carcinoma (HCC) tumor progression. However, a comprehensive analysis of the biological roles of neutrophil infiltration and related genes in clinical outcomes and immunotherapy is lacking. Methods: HCC samples were obtained from the TCGA and GEO databases. The CIBERSORT algorithm was used to reveal the TIME landscape. Gene modules significantly associated with neutrophils were found using weighted gene co-expression network analysis (WGCNA), a "dynamic tree-cut" algorithm, and Pearson correlation analysis. Genes were screened using Cox regression analysis and LASSO and prognostic value validation was performed using Kaplan-Meier curves and receiver operating characteristic (ROC) curves. Risk scores (RS) were calculated and nomograms were constructed incorporating clinical variables. Gene set variation analysis (GSVA) was used to calculate signaling pathway activity. Immunophenoscore (IPS) was used to analyze differences in immunotherapy among samples with different risk scores. Finally, the relationship between RS and drug sensitivity was explored using the pRRophetic algorithm. Results: 10530 genes in 424 samples (50 normal samples, 374 tumor samples) were obtained from the TCGA database. Using WGCNA, the "MEbrown" gene module was most associated with neutrophils. Nine genes with prognostic value in HCC (PDLIM3, KLF2, ROR2, PGF, EFNB1, PDZD4, PLN, PCDH17, DOK5) were finally screened. Prognostic nomograms based on RS, gender, tumor grade, clinical stage, T, N, and M stages were constructed. The nomogram performed well after calibration curve validation. There is an intrinsic link between risk score and TMB and TIME. Samples with different risk scores differed in different signaling pathway activity, immunopharmaceutical treatment and chemotherapy sensitivity. Conclusion: In conclusion, a comprehensive analysis of neutrophil-related prognostic features will help in prognostic prediction and advance individualized treatment.
RESUMEN
Background: With advances in early diagnosis and treatment, the number of cancer survivors continues to grow, and more and more cancer survivors face the threat of second primary cancer (SPM). Second primary pancreatic ductal adenocarcinoma (spPDAC) is an important subclass of SPM, but its prognostic characteristics are poorly understood. Methods: A total of 5,439 spPDAC samples and 67,262 primary pancreatic ductal adenocarcinoma (pPDAC) samples were extracted from the SEER database for this study. Survival differences between spPDAC and pPDAC samples were compared using Kaplan-Meier curves and log-rank tests. The Fine and Gray proportional subdistributed hazard method was used to analyze potential associations between clinical variables and pancreatic ductal adenocarcinoma-specific death (PDACSD) and death from other causes. After that, the clinical variables significantly related to PDACSD were screened out to construct a competing risk nomogram, which was used to evaluate the probability of the occurrence of PDACSD. The C-index was used to evaluate the discriminative ability of the model. The area under the curve (AUC) was used to verify the discrimination of the model. The calibration curve was used to verify the calibration of the model. Decision curve analysis (DCA) was used to validate the clinical utility of the model. Results: Compared with patients with spPDAC, the pPDAC sample had a better prognosis (p = 0.0017). Across all spPDAC samples, the three most common sites of first-present cancer were the prostate, breast, and digestive system. Age (p < 0.001), race (p = 0.006), interval (p = 0.016), location (p < 0.001), T stage (p = 0.003), M stage (p < 0.001), chemotherapy (p < 0.001), and radiotherapy (p = 0.006) were the clinical variables associated with PDACSD screened by multivariate competing risks analysis. The concordance index values for the training and validation sets were 0.665 (95% CI, 0.655, 0.675) and 0.666 (95% CI, 0.650, 0.682), respectively. AUC, calibration curve, and DCA indicated that the model we constructed had good discrimination, calibration, and clinical utility. Conclusions: In conclusion, we first analyzed the impact of previous cancer history on prognosis. We then constructed a competing risk model that can predict the probability of developing PDACSD in spPDAC. This model has good discriminative ability, calibration, and clinical practicability and has certain guiding value for clinical decision-making.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD), that is associated with a significantly increased risk of colon cancer. As a classic traditional Chinese medicine, Ganluyin (GLY) has a long history as an anti-inflammatory medication, but its impacts on UC has not been established. AIM OF THE STUDY: This study aims to evaluate the protective effect and mechanism of GLY on a pathway involving enteric-origin lipopolysaccharide (LPS), toll-like receptor (TLR)4, and NF-κB in mice with dextran sulfate sodium (DSS)-induced UC. MATERIALS AND METHODS: After three weeks of intragastric administration of GLY, a UC model was induced in mice by administration of 4% DSS in drinking water for one week. The disease activity index (DAI) was measured, and histological staining was used to detect histopathological changes of colon. LPS content of the serum was measured by ELISA, and the expression of tight junction proteins and proteins related to TLR4/NF-κB pathway in colon were analyzed by immunohistochemistry or Western Blotting. The intestinal flora was analyzed by 16S rRNA sequencing. RESULTS: GLY improved the histological pathological changes of DSS-induced UC, as assessed by DAI, colonic mucosal damage, inflammatory cell infiltration, and goblet cell and mucus reduction. GLY also protected the intestinal mucosal barrier by increasing the expression of the tight junction proteins, occludin, claudin-1, and ZO-1 and by reducing the serum LPS content and decreasing the expression of TLR4, MyD88, NF-κB, IL-6, IL-1ß, and TNF-α proteins in colon. Analyses of the intestinal flora showed that GLY restored the homeostasis of the intestinal flora through increases in the abundance of Firmicutes and decreases in the abundance of Proteobacteria and Bacteroidetes, which is associated with the production of LPS. CONCLUSION: GLY might exert an anti-UC effect by improving the colonic mucosal barrier and inhibiting the enteric-origin LPS/TLR4/NF-κB inflammatory pathway, and restoring the homeostasis of the intestinal flora in UC mice. These discoveries lay a strong foundation for GLY as a UC treatment.
Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Sulfato de Dextran , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos ICRRESUMEN
Two consecutive trials were conducted to investigate the effects of glucosinolates (GLS) in rapeseed cake (RSC) on nitrogen (N) metabolism and urine nitrous oxide (N2O) emissions in steers. In trial 1, 8 steers and 4 levels of RSC, i.e. 0, 2.7%, 5.4% and 8.0% dry matter (DM) (0, 6.0, 12.1, 18.1 µmol GLS/g DM) were allocated in a replicated 4 × 4 Latin square. In trial 2, the static incubation technique was used for measuring the N2O emissions of the urine samples collected from trial 1. The results of trial 1 indicated that dietary inclusion of RSC decreased the digested N and increased the fecal N excretion (P < 0.01), whereas it did not affect the urinary N excretion, total N excretion and N retention (P > 0.10). Dietary inclusion of RSC decreased the urinary excretion of urea while it increased allantoin, total purine derivatives, the predicted rumen microbial N flow and thiocyanate (SCN) (P < 0.05). Dietary inclusion of RSC did not affect the plasma triiodothyronine and thyroxine while it down-regulated the plasma relative concentrations of 4-aminohippuric acid, 3α,7α-dihydroxycoprostanic acid, phosphatidylserine (14:0/16:0), 6ß-hydroxyprogesterone, pyrrhoxanthinol, tatridin B, mandelonitrile rutinoside, taraxacoside (P < 0.05), and up-regulated hypoglycin B, neuromedin N (1-4), dhurrin, 5-deoxykievitone (P < 0.01). The results of trial 2 indicated that dietary RSC increased the steer urine N2O-N fluxes, the ratio of N2O-N to N application and the estimated steer urine N2O-N emissions (P < 0.01). A close correlation was found between the estimated steer urine N2O-N emissions and the output of urinary SCN (P < 0.001). In conclusion, dietary RSC increased the fecal N excretion, whereas it did not affect the urinary N excretion and the N retention rate in steers. Dietary RSC increased rather than decreased the urine N2O-N emissions even though it decreased the urinary excretion of urea. The SCN excreted in urine could be the major factor in increasing the urine N2O-N emissions. Whether other metabolites excreted into urine from RSC have an impact on the urine N2O-N emissions in steers needs to be investigated in the future.
RESUMEN
OBJECTIVE: Non-invasive methods to enhance drug delivery and efficacy in the brain have been pursued for decades. Focused ultrasound hyperthermia (HT) combined with thermosensitive therapeutics have been demonstrated promising in enhancing local drug delivery to solid tumors. We hypothesized that the presence of microbubbles (MBs) combined with transcranial MR-guided focused ultrasound (MRgFUS) could be used to reduce the ultrasound power required for HT while simultaneously increasing drug delivery by locally opening the blood-brain barrier (BBB). METHODS: Transcranial HT (42 °C, 10 min) was performed in wild-type mice using a small animal MRgFUS system incorporated into a 9.4T Bruker MR scanner, with infusions of saline or Definity MBs with doses of 20 or 100 µl/kg/min (denoted as MB-20 and MB-100). MR thermometry data was continuously acquired as feedback for the ultrasound controller during the procedure. RESULTS: Spatiotemporally precise transcranial HT was achieved in both saline and MB groups. A significant ultrasound power reduction (-45.7%, p = 0.006) was observed in the MB-20 group compared to saline. Localized BBB opening was achieved in MB groups confirmed by CE-T1w MR images. There were no structural abnormalities, edema, hemorrhage, or acutemicroglial activation in all groups, confirmed by T2w MR imaging and histology. CONCLUSION: Our investigations showed that it is feasible and safe to achieve spatiotemporally precise brain HT at significantly reduced power and simultaneous localized BBB opening via transcranial MRgFUS and MBs. SIGNIFICANCE: This study provides a new synergistic brain drug delivery method with clinical translation potential.
Asunto(s)
Barrera Hematoencefálica , Hipertermia Inducida , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sistemas de Liberación de Medicamentos/métodos , Retroalimentación , Imagen por Resonancia Magnética/métodos , Ratones , MicroburbujasRESUMEN
BACKGROUND: Treating perihilar cholangiocarcinoma (PHCC) is particularly difficult due to the fact that it is usually in an advanced stage at the time of diagnosis. Irreversible electroporation treatment (IRE) involves the local administration of a high-voltage electric current to target lesions without causing damage to surrounding structures. This study investigated the safety and efficacy of using IRE in conjunction with intraoperative biliary stent placement in cases of unresectable PHCC. METHODS: This study enrolled 17 patients with unresectable Bismuth type III/IV PHCC who underwent IRE in conjunction with intraoperative biliary stent placement (laparotomic) in two medical centers in Asia between June 2015 and July 2018. Analysis focused on the perioperative clinical course, the efficacy of biliary decompression, and outcomes (survival). RESULTS: Mean total serum bilirubin levels (mg/dL) on postoperative day (POD) 7, POD30, and POD90 were significantly lower than before IRE (respectively 3.46 vs 4.54, p=0.007; 1.21 vs 4.54, p<0.001; 1.99 vs 4.54, p<0.001). Mean serum carbohydrate antigen 19-9 (CA19-9, U/ml) levels were significantly higher on POD3 than before the operation (518.8 vs 372.4, p=0.001) and significantly lower on POD30 and POD90 (respectively 113.7 vs 372.4, p<0.001; 63.9 vs 372.4, p<0.001). No cases of Clavien-Dindo grade III/IV adverse events or mortality occurred within 90 days post-op. The median progression-free survival was 21.5 months, and the median overall survival was 27.9 months. All individuals who survived for at least one year did so without the need to carry percutaneous biliary drainage (PTBD) tubes. CONCLUSIONS: It appears that IRE treatment in conjunction with intraoperative biliary stent placement is a safe and effective approach to treating unresectable PHCC. The decompression of biliary obstruction without the need for PTBD tubes is also expected to improve the quality of life of patients.
RESUMEN
Transient disruption of the blood-brain barrier (BBB) with focused ultrasound (FUS) is an emerging clinical method to facilitate targeted drug delivery to the brain. The focal noninvasive disruption of the BBB can be applied to promote the local delivery of hyperpolarized substrates. In this study, we investigated the effects of FUS on imaging brain metabolism using two hyperpolarized 13C-labeled substrates in rodents: [1-13C]pyruvate and [1-13C]glycerate. The BBB is a rate-limiting factor for pyruvate delivery to the brain, and glycerate minimally passes through the BBB. First, cerebral imaging with hyperpolarized [1-13C]pyruvate resulted in an increase in total 13C signals (p = 0.05) after disrupting the BBB with FUS. Significantly higher levels of both [1-13C]lactate (lactate/total 13C signals, p = 0.01) and [13C]bicarbonate (p = 0.008) were detected in the FUS-applied brain region as compared to the contralateral FUS-unaffected normal-appearing brain region. The application of FUS without opening the BBB in a separate group of rodents resulted in comparable lactate and bicarbonate productions between the FUS-applied and the contralateral brain regions. Second, 13C imaging with hyperpolarized [1-13C]glycerate after opening the BBB showed increased [1-13C]glycerate delivery to the FUS-applied region (p = 0.04) relative to the contralateral side, and [1-13C]lactate production was consistently detected from the FUS-applied region. Our findings suggest that FUS accelerates the delivery of hyperpolarized molecules across the BBB and provides enhanced sensitivity to detect metabolic products in the brain; therefore, hyperpolarized 13C imaging with FUS may provide new opportunities to study cerebral metabolic pathways as well as various neurological pathologies.
Asunto(s)
Barrera Hematoencefálica , Encéfalo , Animales , Transporte Biológico , Encéfalo/diagnóstico por imagen , Sistemas de Liberación de Medicamentos , Imagen por Resonancia Magnética , Ácido Pirúvico , Ratas , Ratas Sprague-DawleyRESUMEN
PURPOSE: When doxorubicin (DOX) is administered via lyso-thermosensitive liposomes (LTLD), mild hyperthermia enhances localized delivery to heated vs. unheated tumors. The optimal LTLD dose and the impact of different doses on systemic drug distribution are unknown.Materials and methods: In this study, we evaluated local and systemic DOX delivery with three LTLD doses (0.1, 0.5, and 2.5 mg/kg) in a Vx2 rabbit tumor model. Temporally and spatially accurate controlled hyperthermia was achieved using a clinical MR-HIFU system for the intended heating duration (40 min).Results: DOX concentration in tissues delivered from LTLD combined with MR-HIFU mild hyperthermia are dose-dependent, including heated/unheated tumor, heart, and other healthy organs. Higher DOX accumulation and tumor-to-heart drug concentration ratio, defined as the ratio of DOX delivered into the tumor vs the heart, were observed in heated tumors compared to unheated tumors in all three tested doses. The DOX uptake efficiency for each mg/kg of LTLD injected IV of heated tumor was significantly higher than that of unheated tumor and heart within the tested dose range (0.1-2.5 mg/kg). The DOX uptake for the heart linearly scaled up as a function of dose while that for the heated tumor showed some evidence of saturation at the high dose of 2.5 mg/kg.Conclusions: These results provide guidance on clinical protocol design of hyperthermia-triggered drug delivery.
Asunto(s)
Hipertermia Inducida , Neoplasias , Animales , Antibióticos Antineoplásicos/uso terapéutico , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Hipertermia , Liposomas , Neoplasias/terapia , ConejosRESUMEN
Real-time acoustic feedback control based on harmonic emissions of stimulated microbubbles may be important for facilitating the clinical adoption of focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening, both to ensure safe acoustic exposures, and to achieve repeatable and consistent opening. Previously our group demonstrated that successful BBB opening was achievable with both commercially available microbubbles and custom-made nanobubbles under acoustic feedback control. In a recent study, we demonstrated the acoustic control performance was not sensitive to the nanobubble concentration within 109-1011 bubbles/ml. The goal of this study was to examine the effect of the ultrasound target location in the rat brain on the acoustic control quality during BBB opening with nanobubbles. Temporal analysis of the received acoustic signals during each ultrasound pulse indicated that stable nanobubble oscillation was present throughout the entire 10 ms ultrasound exposure. The acoustic feedback control signals were very sensitive to the brain spatial location in rats. There appears to be a shared pattern of acoustic control stability in the brain across different animals, suggesting anatomical features are an underlying cause. The findings emphasize the importance of tuning acoustic feedback control algorithms for specific rodent brain regions of interest to ensure optimal performance.
Asunto(s)
Acústica , Barrera Hematoencefálica , Encéfalo/diagnóstico por imagen , Microburbujas , Nanoestructuras , Ondas Ultrasónicas , Algoritmos , Animales , Imagen por Resonancia Magnética , Masculino , RatasRESUMEN
Background: The use of magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) to deliver mild hyperthermia requires stable temperature mapping for long durations. This study evaluates the effects of respiratory motion on MR thermometry precision in pediatric subjects and determines the in vivo feasibility of circumventing breathing-related motion artifacts by delivering MR thermometry-controlled HIFU mild hyperthermia during repeated forced breath holds.Materials and methods: Clinical and preclinical studies were conducted. Clinical studies were conducted without breath-holds. In phantoms, breathing motion was simulated by moving an aluminum block towards the phantom along a sinusoidal trajectory using an MR-compatible motion platform. In vivo experiments were performed in ventilated pigs. MR thermometry accuracy and stability were evaluated.Results: Clinical data confirmed acceptable MR thermometry accuracy (0.12-0.44 °C) in extremity tumors, but not in the tumors in the chest/spine and pelvis. In phantom studies, MR thermometry accuracy and stability improved to 0.37 ± 0.08 and 0.55 ± 0.18 °C during simulated breath-holds. In vivo MR thermometry accuracy and stability in porcine back muscle improved to 0.64 ± 0.22 and 0.71 ± 0.25 °C during breath-holds. MR-HIFU hyperthermia delivered during intermittent forced breath holds over 10 min duration heated an 18-mm diameter target region above 41 °C for 10.0 ± 1.0 min, without significant overheating. For a 10-min mild hyperthermia treatment, an optimal treatment effect (TIR > 9 min) could be achieved when combining 36-60 s periods of forced apnea with 60-155.5 s free-breathing.Conclusion: MR-HIFU delivery during forced breath holds enables stable control of mild hyperthermia in targets adjacent to moving anatomical structures.
Asunto(s)
Contencion de la Respiración , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Animales , Estudios de Factibilidad , Femenino , PorcinosRESUMEN
Real-time acoustic feedback control based on harmonic emissions of stimulated microbubbles may serve as a way to achieve reliable blood-brain barrier (BBB) opening with focused ultrasound in the brain. Previously, we demonstrated BBB opening was possible using sub-micron bubbles (aka nanobubbles) and produced comparable results to commercially available microbubbles (Optison, Definity, etc.). The harmonic emissions and acoustic control were observed to be more consistent using nanobubbles, which warrants further study of BBB opening using these agents. This study examined the stimulated acoustic emissions of nanobubbles at different concentrations both in vitro and in vivo and evaluated BBB opening under real-time acoustic feedback control across concentrations. Original nanobubbles (1011 bubbles/mL) have long in vitro persistence (7.3 ± 3.3 min) and circulation time in rats (approximately 10 min) under exposures in this study, and both degraded with dilutions. With all three tested dilutions (1:1, 1:10 and 1:100), successful BBB opening was reliably achieved under real-time feedback control.
Asunto(s)
Acústica , Barrera Hematoencefálica/metabolismo , Retroalimentación , Microburbujas , Ultrasonido/métodos , Animales , Femenino , Técnicas In Vitro , Modelos Animales , Ratas , Ratas Sprague-Dawley , SonicaciónRESUMEN
Focused ultrasound combined with bubble-based agents serves as a non-invasive way to open the blood-brain barrier (BBB). Passive acoustic detection was well studied recently to monitor the acoustic emissions induced by the bubbles under ultrasound energy, but the ability to perform reliable BBB opening with a real-time feedback control algorithm has not been fully evaluated. This study focuses on characterizing the acoustic emissions of different types of bubbles: Optison, Definity, and a custom-made nanobubble. Their performance on reliable BBB opening under real-time feedback control based on acoustic detection was evaluated both in-vitro and in-vivo. The experiments were conducted using a 0.5 MHz focused ultrasound transducer with in-vivo focal pressure ranges from 0.1-0.7 MPa. Successful feedback control was achieved with all three agents when combining with infusion injection. Localized opening was confirmed with Evans blue dye leakage. Microscopic images were acquired to review the opening effects. Under similar total gas volume, nanobubble showed a more reliable opening effect compared to Optison and Definity (p < 0.05). The conclusions obtained from this study confirm the possibilities of performing stable opening using a feedback control algorithm combined with infusion injection. It also opens another potential research area of BBB opening using sub-micron bubbles.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Composición de Medicamentos/métodos , Microburbujas , Sonicación , Acústica/instrumentación , Algoritmos , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de la radiación , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Estudios de Factibilidad , Retroalimentación , Femenino , Microburbujas/normas , Ratas , Ratas Sprague-Dawley , Sonicación/instrumentación , Sonicación/métodos , Ultrasonido/instrumentación , Ultrasonido/métodosRESUMEN
Treatment of prosthetic joint infections often involves multiple surgeries and prolonged antibiotic administration, resulting in a significant burden to patients and the healthcare system. We are exploring a non-invasive method to eradicate biofilm on metal implants utilizing high-frequency alternating magnetic fields (AMF) which can achieve surface induction heating. Although proof-of-concept studies demonstrate the ability of AMF to eradicate biofilm in vitro, there is a legitimate safety concern related to the potential for thermal damage to surrounding tissues when considering heating implanted metal objects. The goal of this study was to explore the feasibility of detecting acoustic emissions associated with boiling at the interface between a metal implant and surrounding soft tissue as a wireless safety sensing mechanism. Acoustic emissions generated during in vitro and in vivo AMF exposures were captured with a hydrophone, and the relationship with surface temperature analyzed. The effect of AMF exposure power, surrounding media composition, implant location within the AMF transmitter, and implant geometry on acoustic detection during AMF therapy was also evaluated. Acoustic emissions were reliably identified in both tissue-mimicking phantom and mouse studies, and their onset coincided with the implant temperature reaching the boiling threshold. The viscosity of the surrounding medium did not impact the production of acoustic emissions; however, emissions were not present when the medium was oil due to the higher boiling point. Results of simulations and in vivo studies suggest that short-duration, high-power AMF exposures combined with acoustic sensing can be used to minimize the amount of thermal damage in surrounding tissues. These studies support the hypothesis that detection of boiling associated acoustic emissions at a metal/tissue interface could serve as a real-time, wireless safety indicator during AMF treatment of biofilm on metallic implants.
Asunto(s)
Biopelículas , Hipertermia Inducida/métodos , Campos Magnéticos , Metales , Prótesis e Implantes , Infecciones Relacionadas con Prótesis/terapia , Acústica , Animales , Simulación por Computador , Femenino , Análisis de Elementos Finitos , Calor , Humanos , Rodilla , Ratones , Modelos Estadísticos , Necrosis , Seguridad del Paciente , Fantasmas de Imagen , Propiedades de Superficie , Tecnología InalámbricaRESUMEN
Treatment of prosthetic joint infection (PJI) usually requires surgical replacement of the infected joint and weeks of antibiotic therapy, due to the formation of biofilm. We introduce a non-invasive method for thermal destruction of biofilm on metallic implants using high-frequency (>100 kHz) alternating magnetic fields (AMF). In vitro investigations demonstrate a >5-log reduction in bacterial counts after 5 minutes of AMF exposure. Confocal and scanning electron microscopy confirm removal of biofilm matrix components within 1 minute of AMF exposure, and combination studies of antibiotics and AMF demonstrate a 5-log increase in the sensitivity of Pseudomonas aeruginosa to ciprofloxacin. Finite element analysis (FEA) simulations demonstrate that intermittent AMF exposures can achieve uniform surface heating of a prosthetic knee joint. In vivo studies confirm thermal damage is confined to a localized region (<2 mm) around the implant, and safety can be achieved using acoustic monitoring for the presence of surface boiling. These initial studies support the hypothesis that AMF exposures can eradicate biofilm on metal implants, and may enhance the effectiveness of conventional antibiotics.