Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e22339, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045187

RESUMEN

The integration of anoxic filter and aerobic rotating biological contactor shows promise in treating rural domestic sewage. It offers high efficiency, low sludge production, and strong shock resistance. However, further optimization is needed for odor control, pollutant removal, and power consumption. In this study, the investigation on a one-pump-drive lab-scale device of retention anoxic filter (RAF) integrated with hydraulic rotating bio-contactor (HRBC) and its optimal operation mode were conducted. During the 50-day operation, optimal operation parameters were investigated. These parameters included a 175 % reflux ratio (RR), 5-h hydraulic retention time in the RAF (HRTRAF), and 2.5-h hydraulic retention time in the HRBC (HRTHRBC). Those conditions characterized a micro-aerobic environment (DO: 0.6-0.8 mg/L) in RAF, inducing improved deodorization (89.3 % sulfide removal) and denitrification (85.9 % nitrate removal) simultaneously. During the operation period, 84.79 ± 3.87 % COD, 82.71± 2.06 % NH4+-N, 74.83 ± 2.06 % TN, 91.68± 2.12 % S2-, and 89.04 ± 1.68 % TON were removed in RAF-HRBC. Based on large amount of operational data, organic loading rate curves of RAF-HRBC were validated and calibrated as a crucial reference to aid in full-scale designs and applications. The richness of microbial community was improved in both RAF and HRBC. In the RAF, the autotrophic sulfide-oxidizing nitrate-reducing bacteria (a-son) and heterotrophic sulfide-oxidizing nitrate-reducing bacteria (h-son) were selectively enriched, which intensified the sulfide removal and denitrification process. In the two-stage HRBC system, the 1st stage RBC was primarily composed of organics degraders, while the 2nd stage RBC consisted mainly of ammonium oxidizers. Overall, the integrated RAF-HRBC process holds significant potential for simultaneously improving pollutant removal and in-situ odor mitigation in decentralized domestic sewage treatment. This process specifically contributes to enhancing environmental sustainability and operational efficiency.

2.
J Environ Manage ; 332: 117349, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738718

RESUMEN

The biggest problem in the treatment of rural domestic sewage is that the existing treatment projects require the big investment and the high operation and maintenance costs. To overcome this problem, cost-effective, low-consuming, resource-recovering and easy-maintenance technologies are urgently demanded. To this end, a novel anoxic-aerobic system combined with integrated vertical-flow constructed wetland (IVFCW) with source separation was proposed for treating rural sewage in this study. The anoxic-aerobic system contained the anoxic filter (ANF), two-stage waterwheel driving rotating biological contactors (ts-WDRBCs). Key parameters of ts-WDRBCs were identified to be 0.6 m drop height and 4 r/min rotational speed found on oxygenated clean water experiments. Then, the optimal operating parameters were determined to be 200% reflux ratio and 3 h hydraulic retention time of ts-WDRBCs. During the 80-day operation, 91.58 ± 1.86% COD, 96.17 ± 0.92% NH4+-N, 82.71 ± 3.92% TN and 92.28 ± 2.78% TP were removed under the optimal operating parameters. Compared with other treatment technologies, this combined bio-ecological system could achieve the higher simultaneous organics and nutrients removal. The effluent NO3--N/NH4+-N concentration ratio of ts-WDRBCs was 2.15 ± 0.54, which was proved to be beneficial for plants growth. The microbial communities coexisted in each section ensured the desired removal performance of combined bio-ecological system. Summarily, high performance together with low investment costs and cheap operation costs are characteristics that make this system a promising and competitive alternative for rural sewage treatment.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Humedales , Nitrógeno/análisis , Fósforo , China , Nutrientes
3.
Water Sci Technol ; 83(1): 233-246, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33460421

RESUMEN

Rural domestic wastewater (RDW), one of the non-point pollution sources, has become a significant object related to sanitation improvement and water pollution control in Taihu Lake Basin, China. Current research on RDW characteristics and management with source separation is limited. In this study, a source-separated investigation into the characteristics of RDW was conducted, and the management suggestions were proposed. The results showed that the average RDW production coefficient was 94.1 ± 31.6 (range: 71.8-143.0) liters per capita (person) per day. Household-level wastewater generation peaked two or three times daily, and the synchronous fluctuation could cause hydraulic loading shocks to treatment facilities. The population equivalents of chemical oxygen demand, ammonium nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in RDW were 78.7, 3.7, 4.12, and 0.8 g/(cap·d), respectively. Blackwater from water closet source accounted for 30.4% of the total wastewater amount, contributing 93.0%, 81.7%, and 67.3% to loads of NH4+-N, TN, and TP, respectively. Graywater from the other sources with low nutrient-related pollutant concentrations and loads, accounting for 69.6% of the total wastewater amount, was a considerable alternative water resource. The quantitative and qualitative characteristics indicated that GW and BW had the potential of being reused in relation to water and nutrients, respectively.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Humanos , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Pollut Res Int ; 27(24): 29837-29855, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32472508

RESUMEN

Substrates are the main factor influencing the performance of constructed wetlands (CWs), and especially play an important role in enhancing the removal of nitrogen and phosphorus from CWs. In the recent 10 years, based on the investigation of emerged substrates used in CWs, this paper summarizes the removal efficiency and mechanism of nitrogen and phosphorus by a single substrate in detail. The simultaneous removal efficiency of nitrogen and phosphorus by different combined substrates is emphatically analyzed. Among them, the reuse of industrial and agricultural wastes as water treatment substrates is recommended due to the efficient pollutant removal efficiency and the principle of waste minimization, also more studies on the environmental impact and risk assessment of the application, and the subsequent disposal of saturated substrates are needed. This work serves as a basis for future screening and development of substrates utilized in CWs, which is helpful to enhance the synchronous removal of nitrogen and phosphorus, as well as improve the sustainability of substrates and CWs. Moreover, further studies on the interaction between different types of substrates in the wetland system are desperately needed.


Asunto(s)
Fósforo , Aguas Residuales , Nitrógeno , Eliminación de Residuos Líquidos , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...