RESUMEN
The recent withdrawal of artefenomel from clinical development leaves no endoperoxide-class agents in the antimalarial pipeline. Synthetic endoperoxides with a desymmetrized structure have demonstrated promising physiochemical and in vivo properties. Here we expand on our initial investigation of trans-3â³ carbamate substitution with a diverse array of amine-, alcohol-, and sulfinyl-terminated analogues prepared in (S,S) and (R,R) configurations. In general, this chemotype combines low-nM antiplasmodial activity with excellent aqueous solubility but widely varying human liver microsome (HLM) stability. We evaluated 20 novel analogues in the P. berghei mouse malaria model, identifying new analogues such as RLA-4767 (9a) and RLA-5489 (9d), with HLM stability and pharmacokinetic profiles superior to analogues from our initial report (e.g., RLA-4776, 8a). These new leads approach or equal the efficacy of artefenomel after two daily oral doses of 10 mg/kg, thus revealing a promising chemotype with the potential to deliver development candidates.
RESUMEN
Background: Iatrogenic bile duct injuries (BDIs) prevention during laparoscopic cholecystectomy (LC) relies on meticulous anatomical dissections through direct visualization. Near-infrared fluorescence (NIRF) with indocyanine green (ICG) improves the visualization of extrahepatic biliary structures. Although ICG can be administered either intravenously or intragallbladder, there remains uncertainty regarding the optimal method for different patient populations. This study sought to assess the suitability of each method for specific patient groups. Methods: Between October 2021 and May 2022, 59 consecutive patients underwent fluorescence-guided LC at West China Hospital of Sichuan University. Among them, 32 patients received an intravenous injection of ICG (10 mg) 10 to 12 hours prior to surgery (Group A: the intravenous group), while 27 patients received an intragallbladder injection of ICG (10 mg) (Group B: the intragallbladder group). Baseline clinical factors, inclusion criteria, and measurements of parameters and complications were assessed. Data were retrospectively collected and analyzed to evaluate the comparability of the two groups and the clinical outcomes. Results: Groups A and B included 32 patients (18 males, 14 females), and 27 patients (13 men, 14 women), respectively. In our statistical analysis, significant differences were observed in preoperative diagnoses between the two groups (P=0.041), but the majority of other baseline clinical factors were comparable. Notably, no statistically significant differences were found in complication rates. However, Group A had a shorter operative time (60.38±9.35 vs. 66.78±9.88 min, P=0.01) and superior bile duct fluorescence (P=0.04) than Group B. Interestingly, fluorescence was not observed in impacted gallbladder stones in Group B. Additionally, patients with cirrhosis (P=0.008) and fatty liver (P=0.005) in Group B had higher common bile duct-to-liver ratios (BLRs) than those in Group A. Conclusions: ICG fluorescence cholangiography allows to visualize extrahepatic biliary anatomical structures with both administration methods. However, the efficacy of bile duct fluorescence varies with different administration routes in diverse patient populations. Hence, appropriate administration route selection for ICG should be tailored to individual patients.
RESUMEN
Two-dimensional human pose estimation aims to equip computers with the ability to accurately recognize human keypoints and comprehend their spatial contexts within media content. However, the accuracy of real-time human pose estimation diminishes when processing images with occluded body parts or overlapped individuals. To address these issues, we propose a method based on the YOLO framework. We integrate the convolutional concepts of Kolmogorov-Arnold Networks (KANs) through introducing non-linear activation functions to enhance the feature extraction capabilities of the convolutional kernels. Moreover, to improve the detection of small target keypoints, we integrate the cross-stage partial (CSP) approach and utilize the small object enhance pyramid (SOEP) module for feature integration. We also innovatively incorporate a layered shared convolution with batch normalization detection head (LSCB), consisting of multiple shared convolutional layers and batch normalization layers, to enable cross-stage feature fusion and address the low utilization of model parameters. Given the structure and purpose of the proposed model, we name it KSL-POSE. Compared to the baseline model YOLOv8l-POSE, KSL-POSE achieves significant improvements, increasing the average detection accuracy by 1.5% on the public MS COCO 2017 data set. Furthermore, the model also demonstrates competitive performance on the CrowdPOSE data set, thus validating its generalization ability.
Asunto(s)
Algoritmos , Postura , Humanos , Postura/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la ComputaciónRESUMEN
Background: Older patients with advanced cholangiocarcinoma lack systemic therapy standards. These people have a high risk of chemotherapy, accompanied by adverse reactions and even discontinuation of treatment. Case presentation: We report a 78-year-old female subject with advanced intrahepatic cholangiocarcinoma presenting with unresectable lesions involving the hepatic veins, along with extensive metastatic lymph nodes. After the geriatric assessment, capecitabine was utilized for only one cycle owing to adverse events (AEs). Next, a combination of low-dose lenvatinib and tislelizumab was administrated as a second-line treatment, which resulted in remarkable early tumor shrinkage. The following individual lenvatinib taper enabled a manageable safety profile and durable deep response. A near-complete response was achieved, with the primary tumor significantly reducing from 5.6 cm × 4.7 cm to nearly complete disappearance, accompanied by complete regression of lymph nodes, and both progression-free survival and overall survival exceeding 24 months. Conclusion: The case provides valuable insights that could influence future treatment strategies for older patients with advanced cholangiocarcinoma who are unsuitable for chemotherapy. The dose-individualized chemotherapy-free regime of lenvatinib and tislelizumab might be used in similar cases to improve their outcomes.
RESUMEN
Resistance to gemcitabine in pancreatic ductal adenocarcinoma (PDAC) leads to ineffective chemotherapy and, consequently, delayed treatment, thereby contributing to poor prognosis. Glycolysis is an important intrinsic reason for gemcitabine resistance as it competitively inhibits gemcitabine activity by promoting deoxycytidine triphosphate accumulation in PDAC. However, biomarkers are lacking to determine which patients can benefit significantly from glycolysis inhibition under the treatment of gemcitabine activity, and a comprehensive understanding of the molecular mechanisms that promote glycolysis in PDAC will contribute to the development of a strategy to sensitize gemcitabine chemotherapy. In this study, we aimed to identify a biomarker that can robustly indicate the intrinsic resistance of PDAC to gemcitabine and guide chemotherapy sensitization strategies. After establishing gemcitabine-resistant cell lines in our laboratory and collecting pancreatic cancer and adjacent normal tissues from gemcitabine-treated patients, we observed that circRNA hsa_circ_0008383 (namely cNEK6) was highly expressed in the peripheral blood and tumor tissues of patients and xenografts with gemcitabine-resistant PDAC. cNEK6 enhanced resistance to gemcitabine by promoting glycolysis in PDAC. Specifically, cNEK6 prevented K48 ubiquitination of small ribonucleoprotein peptide A from the BTRC, a ubiquitin E3 ligase; thus, the accumulated SNRPA stopped PP2Ac translation by binding to its G-quadruplexes in 5' UTR of mRNA. mTORC1 pathway was aberrantly phosphorylated and activated owing to the absence of PP2Ac. The expression level of cNEK6 in the peripheral blood and tumor tissues correlated significantly and positively with the activation of the mTORC1 pathway and degree of glycolysis. Hence, the therapeutic effect of gemcitabine is limited in patients with high cNEK6 levels, and in combination with the mTORC1 inhibitor, rapamycin, can enhance sensitivity to gemcitabine chemotherapy.
Asunto(s)
Carcinoma Ductal Pancreático , Desoxicitidina , Resistencia a Antineoplásicos , Gemcitabina , Glucólisis , Diana Mecanicista del Complejo 1 de la Rapamicina , Neoplasias Pancreáticas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Glucólisis/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Animales , Ratones , Línea Celular Tumoral , Ratones Desnudos , Femenino , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacosRESUMEN
RATIONALE: Intracranial atherosclerotic stenosis (ICAS) represents a prevalent global cause of stroke, posing a notably higher risk of stroke recurrence than other stroke etiologies. Herein, we report a case of a 39-year-old male patient diagnosed with ICAS, treated through an integrated approach incorporating Chinese and Western medicine with significant efficacy and satisfied clinical safety. PATIENT CONCERNS: This patient presented with 1 transient ischemic attack and prolonged headache, dizziness and poor sleep quality. In addition, the patient refused to undergo surgery due to the high cost and postoperative risks. DIAGNOSES: Diagnostic methods used to identify ICAS include conventional cerebral angiography, magnetic resonance angiography (MRA), CT angiography (CTA), transcranial Doppler ultrasound (TCD), and High-Resolution Magnetic resonance imaging. Considering the cost and risks associated with conventional angiography, noninvasive imaging has emerged as the method of choice for diagnosing ICAS. After a series of noninvasive examinations (CTA, TCD, and HR-MRI), the patient was diagnosed with ICAS. INTERVENTIONS: The western medical regimen includes antiplatelet coagulation, blood pressure control, lipid regulation, plaque stabilization, and lifestyle modifications such as exercise, weight loss, and adherence to low-salt, low-fat diets. Complementing this, traditional Chinese medicine (TCM) treatment was guided by the principle of strengthening the spleen, resolving dampness, nourishing blood and harmonizing ying, resolving blood stasis and clearing collaterals. This involved the administration oral Chinese medicine such as modified Shenling Baizhu powder and modified Si Wu decoction. OUTCOMES: The efficacy of the treatment was assessed by evaluating the degree of luminal stenosis and peak systolic blood flow velocity in the M1 segment of the left middle cerebral artery (MCA) before and after the intervention. Encouragingly, posttreatment results demonstrated the disappearance of the plaque in the left MCA-M1 segment, with no significant lumen stenosis observed. Moreover, a notable and smooth reduction in blood flow velocity was achieved in the left MCA, indicating positive outcomes from the integrated traditional Chinese and Western medicine approach. CONCLUSION: This case report shows that a combination of traditional Chinese and Western medicine is safe and effective in the treatment of ICAS and is worthy of promotion in the clinic.
Asunto(s)
Arteriosclerosis Intracraneal , Medicina Tradicional China , Humanos , Masculino , Adulto , Arteriosclerosis Intracraneal/diagnóstico por imagen , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/administración & dosificación , Constricción PatológicaRESUMEN
OBJECTIVE: This study aims to investigate how the impact of preoperative sarcopenia and inflammatory markers for laryngeal cancer patients and develop a new scoring system to predict their prognosis. MATERIALS AND METHODS: Patients who underwent laryngectomy for laryngeal cancer (LC) from December 2015 to December 2020 at the Second Affiliated Hospital of Fujian Medical University were included. Independent prognostic factors were determined using univariate and multivariate analyses. A new scoring system (SFAR) was established based on FAR and preoperative sarcopenia, and statistically analyzed. RESULTS: 198 cases included in this study that met the admission criteria. Multivariate analysis shown that preoperative sarcopenia, pTNM stage, and FAR were independent prognostic factors for laryngeal cancer. Based on these three indicators, we developed the SFAR scoring system. Multivariate analysis showed that SFAR was an independent predictor of laryngeal cancer (p < 0.001). SFAR was then incorporated into a prognostic model that included T-stage and N-stage, and a column-line graph was generated to accurately predict its survival. CONCLUSION: Systemic inflammation and sarcopenia are significantly associated with postoperative prognosis in laryngeal cancer. A new scoring system (SFAR) had implications for improving the prognosis of patients undergoing surgery for laryngeal cancer.
Asunto(s)
Fibrinógeno , Neoplasias Laríngeas , Laringectomía , Sarcopenia , Humanos , Neoplasias Laríngeas/cirugía , Neoplasias Laríngeas/sangre , Neoplasias Laríngeas/patología , Neoplasias Laríngeas/mortalidad , Sarcopenia/sangre , Sarcopenia/etiología , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Laringectomía/efectos adversos , Anciano , Fibrinógeno/análisis , Fibrinógeno/metabolismo , Estudios Retrospectivos , Estadificación de Neoplasias , Albúmina Sérica/análisis , Albúmina Sérica/metabolismoRESUMEN
BACKGROUND: Improvements in surgical techniques and perioperative care as well as increased patient life expectancies have led cardiothoracic surgeons to perform more complex operations, including reoperative open-heart surgeries. However, there is debate as to which patients are appropriate operative candidates for reoperative procedures. METHODS: This is a retrospective, single-center study of patients who underwent reoperative open-heart surgery via median sternotomy or thoracotomy over a 10-year period. Patients with previous ventricular assist device or heart transplant were excluded. Patients were stratified by age <65 years compared with age ≥65 years for analysis. Survival was assessed using Kaplan-Meier curves and log-rank tests. Multivariate analysis was performed with Cox proportional hazards regression. RESULTS: A total of 250 patients underwent reoperative open-heart surgery at our center from 2012 to 2022. In total, 176 patients underwent valve surgery, 53 underwent coronary artery bypass grafting, 31 underwent aortic surgery, and 29 underwent other operations. The overall mortality rate was 13.6% at 30 days and 21.2% at 1-year postoperatively. Patients ≥65 years old had a greater average survival compared with patients <65 years old (5.0 vs 4.1 years, P = .046). However, there were no differences in survival by age when patients were stratified by procedure, either coronary artery bypass grafting (P = .29) or valve surgery (P = .16). On multivariate analysis, reoperative valve surgery, intraoperative use of extracorporeal membrane oxygenation, and a greater number of reoperative surgeries were associated with lower survival. CONCLUSION: Patients undergoing reoperative open-heart surgery are clinically complex and had lower survival with each subsequent reoperation.
RESUMEN
Kidney transplantation (KT) serves as a highly effective treatment for end-stage renal disease (ESRD). Nonetheless, the administration of tacrolimus, a commonly used immunosuppressant in KT, faces challenges due to the lack of dependable biomarkers for its efficacy and the considerable variability in tacrolimus pharmacokinetics (TacIPV). In this study, 183 saliva samples from 48 KT recipients under tacrolimus therapy, alongside 9 healthy control samples, were subjected to 16S rRNA sequencing. The analysis revealed significant differences in the composition of salivary microbiota among KT recipients, patients with ESRD, and healthy controls. Moreover, trough blood concentrations (C0) of tacrolimus were associated with alterations in microbiota composition. Notably, Capnocytophage consistently exhibited a negative correlation in both group-level and individual trends. Furthermore, distinct taxa were identified that effectively distinguished recipients with varying TacIPV, as demonstrated by a cross-validation random forest model (mean AUC = 0.7560), with Anaerolinea emerging as a prominent contributor to the classifier. These findings suggest that salivary microbiota is closely linked to tacrolimus C0 levels and could aid clinicians in differentiating KT recipients based on TacIPV.
RESUMEN
Sunitinib, a novel anti-tumor small molecule targeting VEGFR, is prescribed for advanced RCC and GISTs. Sunitinib is primarily metabolized by the CYP3A enzyme. It is well-known that dexamethasone serves as a potent inducer of this enzyme system. Nonetheless, the effect of dexamethasone on sunitinib metabolism remains unclear. This study examined the effect of dexamethasone on the pharmacokinetics of sunitinib and its metabolite N-desethyl sunitinib in rats. The plasma levels of both compounds were measured using UHPLC-MS/MS. Pharmacokinetic parameters and metabolite ratio values were calculated. Compare to control group, the low-dose dexamethasone group and high-dose dexamethasone group decreased the AUC(0-t) values of sunitinib by 47 % and 45 %, respectively. Meanwhile, the AUC(0-t) values of N-desethyl sunitinib were increased by 2.2-fold and 2.4-fold in low-dose dexamethasone group and high-dose dexamethasone group, respectively. The CL values for sunitinib were both approximately 45 % higher in the two dexamethasone groups. Remarkably, metabolite ratio values increased over 5-fold in both low-dose dexamethasone group and high-dose dexamethasone group, indicating a significant enhancement of sunitinib metabolism by dexamethasone. Moreover, the total levels of sunitinib and its metabolite are also significantly increased. The impact of interactions on sunitinib metabolism, as observed with CYP3A inducers such as dexamethasone, is a crucial consideration for clinical practice. To optimize the dosage and prevent adverse drug events, therapeutic drug monitoring can be employed to avoid the toxicity from such interactions.
Asunto(s)
Citocromo P-450 CYP3A , Dexametasona , Indoles , Pirroles , Ratas Sprague-Dawley , Sunitinib , Animales , Sunitinib/farmacocinética , Dexametasona/farmacocinética , Dexametasona/farmacología , Masculino , Ratas , Indoles/farmacocinética , Indoles/sangre , Indoles/metabolismo , Citocromo P-450 CYP3A/metabolismo , Pirroles/farmacocinética , Pirroles/metabolismo , Inductores del Citocromo P-450 CYP3A/farmacología , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Interacciones Farmacológicas , Antineoplásicos/farmacocinéticaRESUMEN
Major depressive disorder (MDD) is a severe mental disorder with largely unknown mechanisms. Carbonic anhydrases convert CO2 to carbonates and protons, playing roles in various brain functions. Carbonic anhydrase 1 (Car1) is particularly abundant and may be linked to microbiota at interstitial sites. We developed Car1-deficient mice to explore the relationship between depression-like behaviors and gut microbiota. Behavioral tests confirmed depression-like behavior in Car1-/- mice. Fecal samples from Car1-/- and WT mice were collected, and 16S rRNA gene sequencing identified distinct microbiota components between the groups. Car1-/- mice exhibited significantly increased immobility in the tail suspension test (TST) compared to WT mice. The gut microbiota composition differed at the phylum level in p_Bacteroidetes, p_Verrucomicrobia, p_Firmicutes, and p_Tenericutes. At the family level, Car1-/- mice had significantly different abundances in eight microbiota groups compared to WT mice. Car1 deficiency is associated with depressive-like behavior and gut microbiota dysbiosis, potentially linked to depressive-like phenotypes.
RESUMEN
Thorium biosorption by a green microalga, Chlorella Vulgaris, was studied in a stirred batch reactor to investigate the effect of initial solution pH, metal ion concentration, biomass dosage, contact time, kinetics, equilibrium and thermodynamics of uptake. The green microalgae showed the highest Th adsorption capacity at 45 °C for the solution with a thorium concentration of 350 mg L-1 and initial pH of 4. The amount of uptake raised from 84 to 104 mg g-1 as the temperature increased from 15 to 45 °C for an initial metal concentration of 75 mg L-1 at pH 4. Transformation Infrared Spectroscopy (FTIR) was employed to characterize the vibrational frequency changes for peaks related to surface functional groups. Also, the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to determine the morphological changes and elemental analysis of the biosorbent before and after the sorption process. The Langmuir isotherm was in perfect agreement with the equilibrium empirical data of thorium biosorption and the highest sorption capacity of the Chlorella Vulgaris microalgae was determined as 185.19 mg g-1. Also, the results of kinetic studies show that the thorium biosorption process follows a pseudo-second-order kinetic model. The negative value of ΔG0 indicates spontaneity and the positive values of ΔH0 indicate the endothermic nature of the adsorption process.
Asunto(s)
Chlorella vulgaris , Microalgas , Torio , Chlorella vulgaris/metabolismo , Torio/metabolismo , Torio/química , Adsorción , Microalgas/metabolismo , Cinética , Concentración de Iones de Hidrógeno , Biomasa , Termodinámica , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Agua/químicaRESUMEN
Acute-on-chronic liver failure (ACLF) is a severe condition characterized by high mortality rates, and macrophage-mediated inflammation plays a critical role in its progression. Our previous research has indicated the involvement of the RNA-binding protein IGF2BP3 in the pathogenesis of ACLF. However, the underlying molecular mechanisms contributing to this damage require further elucidation. Initially, we observed heightened expression of pro-inflammatory cytokines and macrophage activation in both ACLF patients and a mouse model induced by D-GalN/LPS. Subsequent loss-of-function experiments targeting IGF2BP3 revealed that the knockdown of IGF2BP3 potentially confers hepatoprotection by mitigating macrophage-induced inflammation. Further investigation using RNA Immunoprecipitation (RIP) assays and dual luciferase reporter assays confirmed that RORα is a target protein of the RNA-binding protein IGF2BP3. Importantly, depletion of RORα was found to significantly increase liver damage and inflammation by modulating the NF-κB signaling pathway. In conclusion, our findings underscore the crucial role of IGF2BP3 in mediating liver damage induced by activated macrophages in ACLF, which is regulated by the RORα-NF-κB signaling pathway. These discoveries offer novel insights into the pathogenesis and potential therapeutic targets for ACLF.
Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Macrófagos , Proteínas de Unión al ARN , Transducción de Señal , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Insuficiencia Hepática Crónica Agudizada/inmunología , Insuficiencia Hepática Crónica Agudizada/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/inmunología , Inflamación/metabolismo , Lipopolisacáridos/inmunología , Hígado/patología , Hígado/metabolismo , Hígado/inmunología , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Células RAW 264.7 , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genéticaRESUMEN
The Nab-paclitaxel combined with gemcitabine (AG) regimen is the main chemotherapy regimen for pancreatic cancer, but drug resistance often occurs. Currently, the ability to promote sensitization in drug-resistant cases is an important clinical issue, and the strategy of repurposing conventional drugs is a promising strategy. This study aimed to identify a classic drug that targets chemotherapy resistance's core signaling pathways and combine it with the AG regimen to enhance chemosensitivity. We also aimed to find reliable predictive biomarkers of drug combination sensitivity. Using RNA sequencing, we found that abnormal PI3K/Akt pathway activation plays a central role in mediating resistance to the AG regimen. Subsequently, through internal and external verification of randomly selected AG-resistant patient-derived organoid (PDO) and PDO xenograft models, we discovered for the first time that the classic anti-inflammatory drug sulindac K-80003, an inhibitor of the PI3K/Akt pathway that we focused on, promoted sensitization in half (14/28) of AG-resistant pancreatic ductal adenocarcinoma cases. Through RNA-sequencing, multiplex immunofluorescent staining, and immunohistochemistry experiments, we identified cFAM124A as a novel biomarker through which sulindac K-80003 promotes AG sensitization. Its role as a sensitization marker is explained via the following mechanism: cFAM124A enhances both the mRNA expression of cathepsin L and the activity of the cathepsin L enzyme. This dual effect stimulates the cleavage of RXRα, leading to large amounts of truncated RXRα, which serves as a direct target of K-80003. Consequently, this process results in the pathological activation of the PI3K/Akt pathway. In summary, our study provides a new treatment strategy and novel biological target for patients with drug-resistant pancreatic cancer.
Asunto(s)
Albúminas , Protocolos de Quimioterapia Combinada Antineoplásica , Desoxicitidina , Resistencia a Antineoplásicos , Gemcitabina , Paclitaxel , Neoplasias Pancreáticas , Sulindac , Ensayos Antitumor por Modelo de Xenoinjerto , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Animales , Ratones , Albúminas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Sulindac/farmacología , Sulindac/análogos & derivados , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Femenino , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacosRESUMEN
There is a significant difference in prognosis and response to chemotherapy between basal and classical subtypes of pancreatic ductal adenocarcinoma (PDAC). Further biomarkers are required to identify subtypes of PDAC. We selected candidate biomarkers via review articles. Correlations between these candidate markers and the PDAC molecular subtype gene sets were analyzed using bioinformatics, confirming the biomarkers for identifying classical and basal subtypes. Subsequently, 298 PDAC patients were included, and their tumor tissues were immunohistochemically stratified using these biomarkers. Survival data underwent analysis, including Cox proportional hazards modeling. Our results indicate that the pairwise and triple combinations of KRT5/KRT17/S100A2 exhibit a higher correlation coefficient with the basal-like subtype gene set, whereas the corresponding combinations of GATA6/HNF4A/TFF1 show a higher correlation with the classical subtype gene set. Whether analyzing unmatched or propensity-matched data, the overall survival time was significantly shorter for the basal subtype compared with the classical subtype (p < .001), with basal subtype patients also facing a higher risk of mortality (HR = 4.017, 95% CI 2.675-6.032, p < .001). In conclusion, the combined expression of KRT5, KRT17, and S100A2, in both pairwise and triple combinations, independently predicts shorter overall survival in PDAC patients and likely identifies the basal subtype. Similarly, the combined expression of GATA6, HNF4A, and TFF1, in the same manner, may indicate the classical subtype. In our study, the combined application of established biomarkers offers valuable insights for the prognostic evaluation of PDAC patients.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Queratina-17 , Queratina-5 , Neoplasias Pancreáticas , Proteínas S100 , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Masculino , Femenino , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Proteínas S100/genética , Proteínas S100/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Anciano , Queratina-17/genética , Queratina-17/metabolismo , Pronóstico , Factor de Transcripción GATA6/genética , Factor de Transcripción GATA6/metabolismo , Regulación Neoplásica de la Expresión Génica , Adulto , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Factores QuimiotácticosRESUMEN
BACKGROUND: American Indian populations have experienced marked disparities in respiratory disease burden. Extracellular vesicle-encapsulated microRNAs (EV-miRNAs) are a novel class of biomarkers that may improve recognition of lung damage in indigenous populations. RESEARCH QUESTION: Are plasma EV-miRNAs viable biomarkers of respiratory health in American Indian populations? STUDY DESIGN AND METHODS: The Strong Heart Study (SHS) is a prospective cohort study that enrolled American Indians aged 45 to 74 years. EV-miRNA expression was measured in plasma (1993-1995). Respiratory health outcomes, including pre-bronchodilator FEV1, FVC, and respiratory symptom burden, were ascertained in the same study visit. Club cell secretory protein (CC-16), an antiinflammatory pneumoprotein implicated in COPD pathogenesis, was measured in serum. Linear and logistic regression were used for statistical analyses. Biological pathway analyses were used to elucidate gene targets of significant EV-miRNAs. RESULTS: Among 853 American Indian adults, three EV-miRNAs were associated with FEV1, four EV-miRNAs were associated with FVC, and one EV-miRNA was associated with FEV1/FVC (P < .05). Increased miR-1294 expression was associated with higher odds of airflow limitation (OR, 1.29; 95% CI, 1.07-1.55), whereas increased expression of miR-1294 (OR, 1.32; 95% CI, 1.07-1.63) and miR-532-5p (OR, 1.57; 95% CI, 1.02-2.40) was associated with higher odds of restriction. Increased miR-451a expression was associated with lower odds of exertional dyspnea (OR, 0.71; 95% CI, 0.59-0.85). Twenty-two EV-miRNAs were associated with serum CC-16 levels (q < 0.05), suggesting that EV-miRNAs may play a role in the pathway linking CC-16 to COPD pathogenesis. A pathway analysis showed key EV-miRNAs targeted biological pathways that modulate inflammation, immunity, and structural integrity in the lungs. INTERPRETATION: Circulating EV-miRNAs are novel mechanistic biomarkers of respiratory health and may facilitate the early detection and treatment of lung damage in American Indian populations that have been disproportionately affected by chronic lung diseases.
RESUMEN
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Asunto(s)
Cardiopatías , Nanopartículas , Animales , Humanos , Nanopartículas/química , Cardiopatías/terapiaRESUMEN
BACKGROUND: Schistosoma japonicum (S. japonicum) is the main species of Schistosoma prevalent in China. Myeloid-derived suppressor cells (MDSCs) are important immunoregulatory cells and generally expand in parasite infection, but there is little research relating to MDSCs in Schistosoma infection. METHODS: Fifty-six S. japonicum-infected patients were included in this study. MDSCs and percentages and absolute cell numbers of lymphocyte subsets, including CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells and natural killer (NK) cells were detected using flow cytometry. The degree of liver fibrosis was determined using color Doppler ultrasound. RESULTS: Patients infected with S. japonicum had a much higher percentage of MDSCs among peripheral blood mononuclear cells (PBMCs) than the healthy control. Regarding subpopulations of MDSCs, the percentage of granulocytic myeloid-derived suppressor cells (G-MDSCs) was clearly increased. Correlation analysis showed that the absolute cell counts of T-cell subsets correlated negatively with the percentages of MDSCs and G-MDSCs among PBMCs. The percentage of G-MDSCs in PBMCs was also significantly higher in patients with liver fibrosis diagnosed by color doppler ultrasound (grade > 0), and the percentage of G-MDSCs in PBMCs and liver fibrosis grading based on ultrasound showed a positive correlation. CONCLUSION: S. japonicum infection contributes to an increase in MDSCs, especially G-MDSCs, whose proliferation may inhibit the number of CD4+ T cells in peripheral blood. Meanwhile, there is a close relationship between proliferation of G-MDSCs and liver fibrosis in S. japonicum-infected patients.
Title: La prolifération des MDSC peut indiquer une réponse immunitaire des lymphocytes T CD4+ plus faible dans la schistosomiase japonica. Abstract: Contexte : Schistosoma japonicum est la principale espèce de Schistosoma répandue en Chine. Les cellules myéloïdes suppressives (MDSC) sont des cellules immunorégulatrices importantes et se développent généralement lors d'une infection parasitaire, mais il existe peu de recherches sur les MDSC dans l'infection à Schistosoma. Méthodes : Cinquante-six patients infectés par S. japonicum ont été inclus dans cette étude. Les MDSC, les pourcentages et les nombres absolus des sous-ensembles de lymphocytes, notamment les lymphocytes T CD3+, les lymphocytes T CD4+, les lymphocytes T CD8+, les lymphocytes B et les cellules tueuses naturelles (NK) ont été détectés par cytométrie en flux. Le degré de fibrose hépatique a été déterminé par échographie Doppler couleur. Résultats : Les patients infectés par S. japonicum présentaient un pourcentage beaucoup plus élevé de MDSC parmi les cellules mononucléées du sang périphérique (CMSP) que les patients sains. En ce qui concerne les sous-populations de MDSC, le pourcentage de cellules suppressives granulocytaires dérivées de myéloïdes (G-MDSC) était augmenté de manière évidente. L'analyse de corrélation a montré que le nombre absolu des cellules des sous-ensembles de lymphocytes T était en corrélation négative avec les pourcentages de MDSC et de G-MDSC parmi les CMSP. Le pourcentage de G-MDSC dans les CMSP était également significativement plus élevé chez les patients présentant une fibrose hépatique diagnostiquée par échographie Doppler couleur (grade > 0), et le pourcentage de G-MDSC dans les CMSP et le classement de la fibrose hépatique basé sur l'échographie ont montré une corrélation positive. Conclusion : L'infection à S. japonicum contribue à une augmentation des MDSC, notamment des G-MDSC, dont la prolifération pourrait inhiber le nombre de lymphocytes T CD4+ dans le sang périphérique. Parallèlement, il existe une relation étroite entre la prolifération des G-MDSC et la fibrose hépatique chez les patients infectés par S. japonicum.
Asunto(s)
Linfocitos T CD4-Positivos , Cirrosis Hepática , Células Supresoras de Origen Mieloide , Esquistosomiasis Japónica , Humanos , Esquistosomiasis Japónica/inmunología , Esquistosomiasis Japónica/parasitología , Células Supresoras de Origen Mieloide/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Linfocitos T CD4-Positivos/inmunología , Cirrosis Hepática/inmunología , Cirrosis Hepática/parasitología , Animales , Schistosoma japonicum/inmunología , Proliferación Celular , China/epidemiología , Citometría de Flujo , Adulto Joven , Anciano , Leucocitos Mononucleares/inmunología , Ultrasonografía Doppler en ColorRESUMEN
Exosomes are gaining prominence as vectors for drug delivery, vaccination, and regenerative medicine. Owing to their surface biochemistry, which reflects the parent cell membrane, these nanoscale biologics feature low immunogenicity, tunable tissue tropism, and the ability to carry a variety of payloads across biological barriers. The heterogeneity of exosomes' size and composition, however, makes their purification challenging. Traditional techniques, like ultracentrifugation and filtration, afford low product yield and purity, and jeopardizes particle integrity. Affinity chromatography represents an excellent avenue for exosome purification. Yet, current affinity media rely on antibody ligands whose selectivity grants high product purity, but mandates the customization of adsorbents for exosomes with different surface biochemistry while their binding strength imposes elution conditions that may harm product's activity. Addressing these issues, this study introduces the first peptide affinity ligands for the universal purification of exosomes from recombinant feedstocks. The peptides were designed to (1) possess promiscuous biorecognition of exosome markers, without binding process-related contaminants and (2) elute the product under conditions that safeguard product stability. Selected ligands SNGFKKHI and TAHFKKKH demonstrated the ability to capture of exosomes secreted by 14 cell sources and purified exosomes derived from HEK293, PC3, MM1, U87, and COLO1 cells with yields of up to 80% and up-to 50-fold reduction of host cell proteins (HCPs) upon eluting with pH gradient from 7.4 to 10.5, recommended for exosome stability. SNGFKKHI-Toyopearl resin was finally employed in a two-step purification process to isolate exosomes from HEK293 cell fluids, affording a yield of 68% and reducing the titer of HCPs to 68 ng/mL. The biomolecular and morphological features of the isolated exosomes were confirmed by analytical chromatography, Western blot analysis, transmission electron microscopy, nanoparticle tracking analysis.
Asunto(s)
Cromatografía de Afinidad , Exosomas , Exosomas/química , Exosomas/metabolismo , Cromatografía de Afinidad/métodos , Ligandos , Humanos , Péptidos/química , Péptidos/metabolismo , Péptidos/aislamiento & purificaciónRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis primarily due to metastasis. Accumulating evidence suggests that PLEK2 acts as an oncogene in various tumors. This study aimed to investigate the effects of PLEK2 on PDAC. Expression analysis of PLEK2 was conducted using qRT-PCR, Western blot, and immunohistochemistry in PDAC. Wound healing and transwell assays were performed to evaluate the impact of PLEK2 on cell migration and invasion. A xenograft tumor model was employed to assess the in vivo proliferation of PLEK2. Additionally, the downstream pathway of PLEK2 was analyzed through RNA-seq and confirmed by Western blot analysis. The results demonstrated the upregulation of PLEK2 expression in tumor specimens. High PLEK2 expression was significantly associated with poor overall survival and advanced TNM stages. Correlation analyses revealed positive correlations between PLEK2 and TGF-ß, EGFR, and MMP1. Wound healing and transwell assays demonstrated that PLEK2 promoted PDAC cell migration and invasion, potentially through the activation of the epithelial-to-mesenchymal transition process. The in vivo experiment further confirmed that PLEK2 knockdown suppressed tumor growth. RNA-seq analysis revealed PLEK2's regulation of MMP1 and activation of p-ERK and p-STAT3, which were verified by Western blot analysis. Overall, the present study suggests that PLEK2 may play a tumor-promoting role in PDAC. These findings provide valuable insights into the molecular mechanisms of pancreatic cancer and highlight the potential of PLEK2 as a therapeutic target.