Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 274: 116548, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838547

RESUMEN

Blocking the System Xc-_ GSH_GPX4 pathway to induce ferroptosis in tumor cells is a novel strategy for cancer treatment. GPX4 serves as the core of the System Xc-/GSH/GPX4 pathway and is a predominant target for inducing ferroptosis in tumor cells. This article summarizes compounds identified in current research that directly target the GPX4 protein, including inhibitors, activators, small molecule degraders, chimeric degraders, and the application of combination therapies with other drugs, aiming to promote further research on the target and related diseases.


Asunto(s)
Fosfolípido Hidroperóxido Glutatión Peroxidasa , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Estructura Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Ferroptosis/efectos de los fármacos , Animales
2.
Org Lett ; 26(20): 4351-4355, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38726978

RESUMEN

We report a novel three-component radical acylfluoroalkylation of 1,3-enynes by synergistic N-heterocyclic carbene (NHC)/photoredox catalysis toward various fluorinated allenic aryl ketones. This protocol features a broad substrate scope and excellent functional group tolerability, with examples of late-stage modification of drug molecules and natural products. Notably, seven different fluoroalkyl motifs can be introduced to 1,3-enynes, further demonstrating the robustness and generality of this method. The generation of the fluoroalkyl radical from each sulfinate reagent was individually supported by EPR experiments.

3.
Biochem Pharmacol ; 224: 116230, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38643905

RESUMEN

One of the effective therapeutic strategies to treat rheumatoid arthritis (RA)-related bone resorption is to target excessive activation of osteoclasts. We discovered that 6-O-angeloylplenolin (6-OAP), a pseudoguaianolide from Euphorbia thymifolia Linn widely used for the treatment of RA in traditional Chinese medicine, could inhibit RANKL-induced osteoclastogenesis and bone resorption in both RAW264.7 cells and BMMs from 1 µM and protect a collagen-induced arthritis (CIA) mouse model from bone destruction in vivo. The severity of arthritis and bone erosion observed in paw joints and the femurs of the CIA model were attenuated by 6-OAP administered at both dosages (1 or 5 mg/kg, i.g.). BMD, Tb.N and BV/TV were also improved by 6-OAP treatment. Histological analysis and TRAP staining of femurs further confirmed the protective effects of 6-OAP on bone erosion, which is mainly due to reduced osteoclasts. Molecular docking indicated that c-Src might be a target of 6-OAP and phosphorylation of c-Src was suppressed by 6-OAP treatment. CETSA and SPR assay further confirmed the potential interaction between 6-OAP and c-Src. Three signaling molecules downstream of c-Src that are vital to the differentiation and function of osteoclasts, NF-κB, c-Fos and NFATc1, were also suppressed by 6-OAP in vitro. In summary, the results demonstrated that the function of c-Src was disrupted by 6-OAP, which led to the suppression of downstream signaling vital to osteoclast differentiation and function. In conclusion, 6-OAP has the potential to be further developed for the treatment of RA-related bone erosion.


Asunto(s)
Artritis Experimental , Resorción Ósea , FN-kappa B , Factores de Transcripción NFATC , Osteoclastos , Osteogénesis , Animales , Ratones , Factores de Transcripción NFATC/metabolismo , Células RAW 264.7 , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Resorción Ósea/prevención & control , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Artritis Experimental/inducido químicamente , Osteogénesis/efectos de los fármacos , FN-kappa B/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Proteína Tirosina Quinasa CSK/metabolismo , Simulación del Acoplamiento Molecular , Familia-src Quinasas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores
4.
Org Lett ; 25(45): 8168-8172, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37922199

RESUMEN

Despite the importance of monofluoroalkyl groups in pharmaceutically relevant molecules, catalytic protocols for their incorporation into alkenes remain limited. We describe herein a three-component acylmonofluoroalkylation of alkenes for the introduction of such moieties through an unprecedented cooperativity between the N-heterocyclic carbene catalyst and earth-abundant Mn(II) complex. This general method can be applied to a variety of alkenes, including styrenes, 1,3-enynes, and allenes, as well as complex substrates containing natural product and drug motifs.

5.
J Am Chem Soc ; 145(41): 22639-22648, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37788450

RESUMEN

Disulfide bonds are widely found in natural peptides and play a pivotal role in stabilizing their secondary structures, which are highly associated with their biological functions. Herein, we introduce a light-mediated strategy to effectively control the formation of disulfides. Our strategy is based on 2-nitroveratryl (oNv), a widely used photolabile motif, which serves both as a photocaging group and an oxidant (after photolysis). We demonstrated that irradiation of oNv-caged thiols with UV light could release free thiols that are rapidly oxidized by locally released byproduct nitrosoarene, leading to a "break-to-bond" fashion. This strategy is highlighted by the in situ restoration of the antimicrobial peptide tachyplesin I (TPI) from its external disulfide-caged analogue TPI-1. TPI-1 exhibits a distorted structure and a diminished function. However, upon irradiation, the ß-hairpin structure and membrane activity of TPI were largely restored via rapid intramolecular disulfide formation. Our study proposes a powerful method to regulate the conformation and function of peptides in a spatiotemporal manner, which has significant potential for the design of disulfide-centered light-responsive systems.


Asunto(s)
Disulfuros , Compuestos de Sulfhidrilo , Disulfuros/química , Estructura Secundaria de Proteína , Compuestos de Sulfhidrilo/química
6.
Bioorg Med Chem ; 94: 117478, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37742398

RESUMEN

A series of pentacyclic triterpene-amino acid derivatives were synthesized and tested for anti-proliferative activity. The results showed that most of the target compounds had good anti-proliferative activity. 2c did not contain protecting groups and hydrochloride, had excellent cytotoxicity, so it had been selected for further study in the mechanism of action in T24 cells. The data from transcriptome sequencing indicated that 2c was found to be closely related to apoptosis and autophagy. Observation of fluorescence staining and analysis from flow cytometry demonstrated that 2c induced apoptosis and cause cell cycle arrest in S/G2 phase in T24 cells. Molecular mechanism studies exhibited that 2c induced apoptosis in the intrinsic and extrinsic pathways. 2c also induced cellular autophagy in T24 cells. Results from Western Blotting showed that 2c could activate JNK pathway and inhibit PI3K/AKT/mTOR pathway. In conclusion, 2c was deserved further investigation in the field of anti-tumor.

7.
Eur J Med Chem ; 247: 115024, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36543033

RESUMEN

Sirtiun 5 (SIRT5) is a NAD+-dependent protein lysine deacylase. It is emerging as a promising target for the development of drugs to treat cancer and metabolism-related diseases. In this study, we screened 5000 compounds and identified a hit compound 14 bearing a pyrazolone functional group as a novel SIRT5-selective inhibitor. Structure-based optimization of 14 resulted in compound 47 with an IC50 value of 0.21 ± 0.02 µM and a 100-fold improved potency. Compound 47 showed substantial selectivity for SIRT5 over SIRT1-3 and SIRT6. Biochemical studies suggest that 47 does not occupy the NAD + -binding pocket and acts as a substrate-competitive inhibitor. The identified potent and selective SIRT5 inhibitors allow further studies as research tools and therapeutic agents.


Asunto(s)
Neoplasias , Pirazolonas , Sirtuinas , Humanos , Sirtuinas/metabolismo , NAD/química , NAD/metabolismo , Lisina , Pirazolonas/farmacología
8.
Chem Biol Interact ; 369: 110286, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36460128

RESUMEN

In order to discover more effective and less toxic drugs in the field of anti-tumor, the backbone structure of 17ß-estradiol was modified, and 11 target compounds were synthesized. Compounds 5 and 10, which exhibited better anti-tumor activity and higher selectivity (more than 10-fold), were chosen for further biological investigation. Flow cytometry results indicated that 5 and 10 could arrest MCF-7 cells in the G2 phase and induce apoptosis. Immunohistochemical analysis revealed that 5 and 10 could bind to the estradiol receptor alpha in MCF-7 cells. Western blotting and real-time PCR assays were performed to detect the effects of compounds on apoptosis-related targets at the protein and gene levels. These results showed that both 5 and 10 could dosed-dependently increase the expression of Apaf-1, Bax, caspase-3,8,9 and reduce the expression levels of the anti-apoptotic factors Bcl-2 and Bcl-xL. Besides, the Human apoptosis array assay demonstrated the expression level of death receptor Trail R2/DR5 was upregulated obviously while the expression of TNF R1, IAPs and Hsp27/60/70 were downregulated. On the whole, 5 induced MCF-7 cell death through the endogenous pathway in mitochondria and the exogenous pathway with death receptor Trail R2/DR5.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Humanos , Células MCF-7 , Western Blotting , Estradiol/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Línea Celular Tumoral
9.
Angew Chem Int Ed Engl ; 61(39): e202203560, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35904863

RESUMEN

Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a key enzyme involved in the trimming of antigenic peptides presented by Major Histocompatibility Complex class I. It is a target of growing interest for the treatment of autoimmune diseases and in cancer immunotherapy. However, the discovery of potent and selective ERAP2 inhibitors is highly challenging. Herein, we have used kinetic target-guided synthesis (KTGS) to identify such inhibitors. Co-crystallization experiments revealed the binding mode of three different inhibitors with increasing potency and selectivity over related enzymes. Selected analogues engage ERAP2 in cells and inhibit antigen presentation in a cellular context. 4 d (BDM88951) displays favorable in vitro ADME properties and in vivo exposure. In summary, KTGS allowed the discovery of the first nanomolar and selective highly promising ERAP2 inhibitors that pave the way of the exploration of the biological roles of this enzyme and provide lead compounds for drug discovery efforts.


Asunto(s)
Aminopeptidasas , Presentación de Antígeno , Aminopeptidasas/metabolismo , Antígenos de Histocompatibilidad Clase I , Péptidos/metabolismo
10.
Bioorg Chem ; 126: 105865, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35605555

RESUMEN

Extensive research effort has been put in pentacyclic triterpenoids due to their numerous biological activities. However, their poor water solubility and low oral bioavailability limit their antitumor effects in vivo. To address these issues, 37 triterpenoid acid derivatives linked to l-phenylalanine or l-proline were designed and synthesized in this study. Structure-activity relationship (SAR) studies found two promising glycyrrhetinic acid (GA) derivatives 11 and 16. Compound 11 was obtained by C3-OH esterification and C30-COOH modification with l-phenylalanine while 16 was obtained by attaching C3-OH with l-phenylalanine. Compounds 11 and 16 exhibit up to 48- and 120-fold improvement respectively compared with the IC50 values of naturally occurring GA in the cellular assay. Fluorescence microscope and flow cytometric analysis suggested that both compounds 11 and 16 increased the content of ROS and Ca2+ in cancer cells, decreased mitochondrial membrane potential (JC-1), and activated the regulator caspase-3/8/9 to trigger cell apoptosis. RNA-seq analysis and western blot analysis indicated that compounds 11 and 16 may promote apoptosis by upregulating the functions of pro-apoptotic factors while inhibiting the proteasome activity.


Asunto(s)
Antineoplásicos , Ácido Glicirretínico , Triterpenos , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Fenilalanina/farmacología , Prolina , Relación Estructura-Actividad , Triterpenos/farmacología
11.
Front Pharmacol ; 13: 794277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355711

RESUMEN

Zanthoxylum nitidum (Roxb.) DC. (ZN), with strong effects of anti-inflammation and antioxidant activities is treated as a core herb in traditional Chinese medicine (TCM) preparation for treating stomachache, toothache, and rheumatoid arthritis. However, the active ingredients of ZN are not fully clarified due to its chemical complexity. In the present study, a double spectrum-effect analysis strategy was developed and applied to explore the bioactive components in herbs, and ZN was used as an example. Here, the chemical components in ZN were rapidly and comprehensively profiled based on the mass defect filtering-based structure classification (MDFSC) and diagnostic fragment-ion-based extension approaches. Furthermore, the fingerprints of 20 batches of ZN samples were analyzed by high-performance liquid chromatography, and the anti-inflammatory and antioxidant activities of the 20 batches of ZN samples were studied. Finally, the partial least squares regression (PLSR), gray relational analysis models, and Spearman's rank correlation coefficient (SRCC) were applied to discover the bioactive compounds in ZN. As a result, a total of 48 compounds were identified or tentatively characterized in ZN, including 35 alkaloids, seven coumarins, three phenolic acids, two flavonoids, and one lignan. The results achieved by three prediction models indicated that peaks 4, 12, and 17 were the potential anti-inflammatory compounds in ZN, whereas peaks 3, 5, 7, 12, and 13 were involved in the antioxidant activity. Among them, peaks 4, 5, 7, and 12 were identified as nitidine, chelerythrine, hesperidin, and oxynitidine by comparison with the standards and other references. The data in the current study achieved by double spectrum-effect analysis strategy had great importance to improve the quality standardization of ZN, and the method might be an efficiency tool for the discovery of active components in a complex system, such as TCMs.

12.
J Chem Inf Model ; 61(10): 5269-5279, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34553597

RESUMEN

Proprotein convertase subtilisin kexin 9 (PCSK9) has been identified as a reliable therapeutic target for hypercholesterolemia and coronary artery heart diseases since the monoclonal antibodies of PCSK9 have launched. Disrupting the protein-protein interaction (PPI) between PCSK9 and the low-density lipoprotein receptor (LDLR) has been considered as a promising approach for developing PCSK9 inhibitors. However, PPIs have been traditionally considered difficult to target by small molecules since the PPI surface is usually large, flat, featureless, and without a "pocket" or "groove" for ligand binding. The PCSK9-LDLR PPI interface is such a typical case. In this study, a potential binding pocket was generated on the PCSK9-LDLR PPI surface of PCSK9 through induced-fit docking. On the basis of this induced binding pocket, virtual screening, molecular dynamics (MD) simulation, and biological evaluations have been applied for the identification of novel small molecule inhibitors of PCSK9-LDLR PPI. Among the selected compounds, compound 13 exhibited certain PCSK9-LDLR PPI inhibitory activity (IC50: 7.57 ± 1.40 µM). The direct binding affinity between 13 and PCSK9 was determined with a KD value of 2.50 ± 0.73 µM. The LDLR uptake function could be also restored to a certain extent by 13 in HepG2 cells. This well-characterized hit compound will facilitate the further development of novel small molecule inhibitors of PCSK9-LDLR PPI.


Asunto(s)
Simulación de Dinámica Molecular , Proproteína Convertasa 9 , Células Hep G2 , Humanos , Proproteína Convertasa 9/metabolismo
13.
Acta Pharm Sin B ; 11(5): 1148-1157, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34094825

RESUMEN

As one of the most lethal diseases, pancreatic cancer shows a dismal overall prognosis and high resistance to most treatment modalities. Furthermore, pancreatic cancer escapes early detection during the curable period because early symptoms rarely emerge and specific markers for this disease have not been found. Although combinations of new drugs, multimodal therapies, and adjuvants prolong survival, most patients still relapse after surgery and eventually die. Consequently, the search for more effective treatments for pancreatic cancer is highly relevant and justified. As a newly re-discovered mediator of gasotransmission, hydrogen sulfide (H2S) undertakes essential functions, encompassing various signaling complexes that occupy key processes in human biology. Accumulating evidence indicates that H2S exhibits bimodal modulation of cancer development. Thus, endogenous or low levels of exogenous H2S are thought to promote cancer, whereas high doses of exogenous H2S suppress tumor proliferation. Similarly, inhibition of endogenous H2S production also suppresses tumor proliferation. Accordingly, H2S biosynthesis inhibitors and H2S supplementation (H2S donors) are two distinct strategies for the treatment of cancer. Unfortunately, modulation of endogenous H2S on pancreatic cancer has not been studied so far. However, H2S donors and their derivatives have been extensively studied as potential therapeutic agents for pancreatic cancer therapy by inhibiting cell proliferation, inducing apoptosis, arresting cell cycle, and suppressing invasion and migration through exploiting multiple signaling pathways. As far as we know, there is no review of the effects of H2S donors on pancreatic cancer. Based on these concerns, the therapeutic effects of some H2S donors and NO-H2S dual donors on pancreatic cancer were summarized in this paper. Exogenous H2S donors may be promising compounds for pancreatic cancer treatment.

14.
Eur J Med Chem ; 210: 113092, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333398

RESUMEN

Marine natural products are known for their diverse chemical structures and extensive bioactivities. Renieramycins, the member of tetrahydroisoquinoline family of marine natural products, arouse interests because of their strong antitumor activities and similar structures to the first marine antitumor agent ecteinascidin-743, approved by the European Union. According to the literatures, researches on the pharmacological activities of renieramycins mainly focus on their antitumor activities. In addition, by structural modification, derivatives of renieramycins show stronger antiproliferative activity and less accidental necrosis activity on cells. Nevertheless, the difficulties in extraction and separation hinder their further development. Hence, the synthetic chemistry work of renieramycins plays a key role in their further development. In this review, currently reported researches on the synthetic chemistry, pharmacological activities and structural modification of renieramycins are summarized, which will benefit future drug development and innovation.


Asunto(s)
Alcaloides/farmacología , Antiinfecciosos/farmacología , Antibióticos Antineoplásicos/farmacología , Antiprotozoarios/farmacología , Productos Biológicos/farmacología , Neoplasias/tratamiento farmacológico , Tetrahidroisoquinolinas/farmacología , Alcaloides/síntesis química , Alcaloides/química , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antibióticos Antineoplásicos/síntesis química , Antibióticos Antineoplásicos/química , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Estructura Molecular , Tetrahidroisoquinolinas/síntesis química , Tetrahidroisoquinolinas/química
15.
Eur J Med Chem ; 209: 112932, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131725

RESUMEN

Pentacyclic triterpenes (PTs) are the active ingredients of many medicinal herbs and pharmaceutical formulations, and are well-known for their anti-inflammatory activity. On the other hand, anti-inflammatory effects of AMP-activated protein kinase (AMPK) have recently drawn much attention. In this study, we found that a variety of naturally occurring PTs sapogenins and saponins could stimulate the phosphorylation of AMPK, and identified δ-oleanolic acid (10) as a potent AMPK activator. Based on these findings, 23 saponin derivatives of δ-oleanolic acid were synthesized in order to find more potent anti-inflammatory agents with improved pharmacokinetic properties. The results of cellular assays showed that saponin 29 significantly inhibited LPS-induced secretion of pro-inflammatory factors TNF-α and IL-6 in THP1-derived macrophages. Preliminary mechanistic studies showed that 29 stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC). The bioavailability of 29 was significantly improved in comparison with its aglycon. More importantly, 29 showed significant anti-inflammatory and liver-protective effects in LPS/D-GalN-induced fulminant hepatic failure mice. Taken together, PTs saponins hold promise as therapeutic agents for inflammatory diseases.


Asunto(s)
Antiinflamatorios/química , Ácido Oleanólico/química , Triterpenos Pentacíclicos/química , Saponinas/química , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Antiinflamatorios/farmacología , Relación Dosis-Respuesta a Droga , Ácido Glicirrínico/química , Humanos , Interleucina-6/metabolismo , Hígado , Macrófagos/efectos de los fármacos , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos BALB C , Triterpenos Pentacíclicos/farmacología , Fosforilación/efectos de los fármacos , Sapogeninas/química , Saponinas/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
16.
Eur J Med Chem ; 199: 112279, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32497973

RESUMEN

USP7 as a deubiquitinase plays important roles in regulating the stability of some oncoproteins including MDM2 and DNMT1, and thus represents a potential anticancer target. Through comparative analysis of USP7 co-crystal structures in complex with the reported piperidinol inhibitors, we noticed that the USP7 Phe409 sub-site might have good adaptability to the ligands. Based on this observation, 55 N-aromatic and N-benzyl piperidinol derivatives were designed, synthesized and biologically evaluated, among which compound L55 was identified as a highly selective and potent USP7 inhibitor (IC50 = 40.8 nM, KD = 78.3 nM). X-ray crystallographic studies revealed that L55 bound to USP7 with a new pose that was very different from the previously reported inhibitors. The results of cellular assays showed that L55 had strong antitumor activity against LNCaP (IC50 = 29.6 nM) and RS4; 11 (IC50 = 41.6 nM) cells, probably through inducing cell death and restricting G0/G1 and S phases. Moreover, L55 dose-dependently reduced the protein levels of MDM2 and DNMT1 and increased the protein levels of p53 and p21. These findings could have valuable implications for designing novel structural classes of USP7 inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Piperidinas/farmacología , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad , Peptidasa Específica de Ubiquitina 7/metabolismo
17.
Eur J Med Chem ; 200: 112466, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32512485

RESUMEN

Activation of AMPK emerges as a potential therapeutic approach to metabolic diseases. AdipoRon is claimed to be an adiponectin receptor agonist that activates AMPK through adiponectin receptor 1 (AdipoR1). However, AdipoRon also exhibits moderate inhibition of mitochondrial complex I, leading to increased risk of lactic acidosis. In order to find novel AdipoRon analogues that activate AMPK without inhibition of complex I, 27 analogues of AdipoRon were designed, synthesized and biologically evaluated. As results, benzyloxy arylamide B10 was identified as a potent AMPK activator without inhibition of complex I. B10 dose-dependently improved glucose tolerance in normal mice, and significantly lowered fasting blood glucose level and ameliorated insulin resistance in db/db diabetic mice. More importantly, unlike the pan-AMPK activator MK-8722, B10 did not cause cardiac hypertrophy, probably owing to its selective activation of AMPK in the muscle tissue but not in the heart tissue. Together, B10 represents a novel class of AMPK activators with promising therapeutic potential against metabolic disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Descubrimiento de Drogas , Piperidinas/farmacología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Complejo I de Transporte de Electrón/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad
18.
J Chem Inf Model ; 60(6): 3255-3264, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32282203

RESUMEN

USP7 has been regarded as a potential therapeutic target for cancer. In this study, virtual screening, molecular dynamics (MD) simulation, and biological evaluation have been applied for the discovery of novel USP7 inhibitors targeting the catalytic active site. Among the obtained compounds, compound 12 with a novel scaffold structure exhibited certain USP7 inhibitory activity (Ub-AMC assay IC50 = 18.40 ± 1.75 µM, Ub-Rho assay IC50 = 7.75 µM). The binding affinity between USP7CD (USP7 catalytic domain) and this hit compound was confirmed with a KD value of 4.46 ± 0.86 µM. Preliminary in vitro studies disclosed its antiproliferative activity on human prostate cancer cell line LNCaP with an IC50 value of 15.43 ± 3.49 µM. MD simulation revealed the detailed differences of protein-ligand interactions between USP7CD and the ligands, including the reference compound ALM4 and compound 12, providing some important information for improving the bioactivity of 12. This hit compound will serve as a promising starting point for facilitating the further discovery of novel USP7 inhibitors.


Asunto(s)
Simulación de Dinámica Molecular , Neoplasias , Dominio Catalítico , Humanos , Simulación del Acoplamiento Molecular , Peptidasa Específica de Ubiquitina 7/metabolismo
19.
ChemMedChem ; 15(12): 1089-1100, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32233075

RESUMEN

Gramicidin S (GS), one of the most widely investigated antimicrobial peptides (AMPs), is known for its robust antimicrobial activity. However, it is restricted to topical application due to undesired hemolytic activity. With the aim of obtaining nontoxic GS analogues, we describe herein a molecular approach in which the native GS ß-turn region is replaced by synthetic ß,γ-diamino acids (ß,γ-DiAAs). Four ß,γ-DiAA diastereomers were employed to mimic the ß-turn structure to afford GS analogues GS3-6, which exhibit diminished hemolytic activity. A comparative structural study demonstrates that the (ßR,γS)-DiAA is the most-stable ß-turn mimic. To further improve the therapeutic index (e. g., high antibacterial activity and low hemolytic activity) and to extend the molecular diversity, GS5 and GS6 were used as structural scaffolds to introduce additional hydrophobic or hydrophilic groups. We show that GS6K, GS6F and GS display comparable antibacterial activity, and GS6K and GS6F have significantly decreased toxicity. Moreover, antibacterial mechanism studies suggest that GS6K kills bacteria mainly through the disruption of the membrane.


Asunto(s)
Antibacterianos/farmacología , Gramicidina/análogos & derivados , Gramicidina/farmacología , Antibacterianos/síntesis química , Antibacterianos/toxicidad , Bacterias/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Gramicidina/toxicidad , Hemólisis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estereoisomerismo
20.
J Chem Inf Model ; 60(3): 1717-1727, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32027126

RESUMEN

Nonalcoholic steatohepatitis (NASH) is one of the important causes of cirrhosis and hepatocellular carcinoma worldwide. PPARα is highly expressed in the liver and plays a critical role in hepatic lipid metabolism. Our analysis of the gene expression profiles in the liver of humanized mice treated with a PPARα agonist and NASH patients suggested that PPARα might be a potential target for NASH therapy. This promoted us to find novel PPARα agonists. The results of virtual screening and biological evaluation identified compound A-4 as a selective PPARα agonist. It significantly regulated the target genes of PPARα involved in fatty acid metabolism and inflammation, exhibiting cellular anti-inflammatory activity. The key residues involved in the binding between PPARα ligand-binding domain (LBD) and compound A-4 were revealed by molecular dynamics (MD) simulation and further experimentally validated by the mutation study. Together, compound A-4 was well characterized as a novel lead compound for developing potent and selective PPARα agonists.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , PPAR alfa , Animales , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...