Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38675308

RESUMEN

Zr-based metallic glasses (MGs) are promising materials for mold manufacturing due to their unique mechanical and chemical properties. However, the high hardness of metallic glasses and their tendency to crystallize at high temperatures make it challenging to fabricate precise and smooth microscale structures on metallic glasses. This limitation hampers the development of metallic glasses as molds. Jet electrochemical machining (jet-ECM) is a non-contact subtractive manufacturing technology that utilizes a high-speed electrolyte to partially remove material from workpieces, making it highly suitable for processing difficult-to-machine materials. Nevertheless, few studies have explored microgroove structures on Zr-based MGs using sodium nitrate electrolytes by jet-ECM. Therefore, this paper advocates the utilization of the jet-ECM technique to fabricate precise and smooth microgroove structures using a sodium nitrate electrolyte. The electrochemical characteristics were studied in sodium nitrate solution. Then, the effects of the applied voltages and nozzle travel rates on machining performance were investigated. Finally, micro-helical and micro-S structures with high geometric dimensional consistency and low surface roughness were successfully fabricated, with widths and depths measuring 433.7 ± 2.4 µm and 101.4 ± 1.6 µm, respectively. Their surface roughness was determined to be 0.118 ± 0.002 µm. Compared to non-aqueous-based methods for jet-ECM of Zr-based MGs, the depth of the microgrooves was increased from 20 µm to 101 µm. Furthermore, the processed microstructures had no uneven edges in the peripheral areas and no visible flow marks on the bottom.

2.
Micromachines (Basel) ; 15(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542622

RESUMEN

Amorphous alloy (AA) is a high-performance metal material generally with significantly excellent mechanical and corrosion resistance properties and thus is considered as a desirable material selection for micro-scale articles. However, the microfabrication of AA still faces a variety of technical challenges mainly because the materials are too hard to process and easily lose their original properties, although at moderately high temperatures. In this study, jet-electrolyte electrochemical machining (Jet-ECM) was proposed to microfabricate the Zr-based AA because it is a low-temperature material-removal process based on the anode dissolution mechanism. The electrochemical dissolution characteristics and material removal mechanism of AA were investigated, and then the optimal process parameters were achieved based on the evaluation of the surface morphologies, surface roughness, geometrical profile, and machining accuracy of the machined micro-dimples. Finally, the feasibility was further studied by using Jet-ECM to fabricate arrayed micro-dimples using the optimized parameters. It was found that Jet-ECM can successfully microfabricate mirror-like surface AA arrayed precision micro-dimples with significantly high dimensional accuracy and geometrical consistency. Jet-ECM is a promisingly advantageous microfabrication process for the hard-to-machine AA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...