Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 1): 130843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484819

RESUMEN

BACKGROUND: Stem cell exosomes are beneficial in accelerating wound repair. However, the therapeutic function is limited due to its rapid clearance in vivo. To improve the functionality of exosomes in cutaneous wound healing, a novel hydrogel was designed and fabricated by recombinant human collagen I and carboxymethyl chitosan loaded with exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs), named as the rhCol I/CMC-Exos hydrogel. METHODS: Exosomes were extracted from hUCMSCs and were characterizated by TEM (Transmission Electron Microscopy), and biomarker detection. The rhCol I hydrogel, rhCol I/carboxymethyl chitosan (rhCol I/CMC) hydrogel and the rhCol I/CMC-Exos hydrogel composites were cross-linked by genipin. These materials were assessed and compared for their physical characteristics, including cross-sectional morphology, porosity, pore distribution, and hydrophilicity. Cell biocompatibility on biomaterials was investigated using scanning electron microscopy and CFDA staining, as well as assessed in vivo through histological examination of major organs in mice. Effects of the hydrogel composite on wound healing were further evaluated by using the full-thickness skin defect mice model. RESULTS: Successful extraction of hUCMSCs-derived exosomes was confirmed by TEM,Western Blotting and flow cytometry. The synthesized rhCol I/CMC-Exos hydrogel composite exhibited cytocompatibility and promoted cell growth in vitro. The rhCol I/CMC-Exos hydrogel showed sustained release of exosomes. In the mice full skin-defects model, the rhCol I/CMC-Exos-treated group showed superior wound healing efficiency, with 15 % faster wound closure compared to controls. Histological examinations revealed thicker dermis formation and more balanced collagen deposition in wounds treated with rhCol I/CMC-Exos hydrogel. Mechanistically, the application of rhCol I/CMC-Exos hydrogel increased fibroblasts proliferation, alleviated inflammation responses as well as promoted angiogenesis, thereby was beneficial in promoting skin wound healing and regeneration. CONCLUSION: Our study, for the first time, introduced recombinant human Collagen I in fabricating a novel hydrogel loaded with hUCMSCs-derived exosomes, which effectively promoted skin wound closure and regeneration, demonstrating a great potential in severe skin wound healing treatment.


Asunto(s)
Quitosano , Exosomas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Hidrogeles/farmacología , Cicatrización de Heridas , Quitosano/farmacología , Estudios Transversales , Colágeno/farmacología , Modelos Animales de Enfermedad , Colágeno Tipo I/farmacología
2.
Front Bioeng Biotechnol ; 10: 1062676, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714615

RESUMEN

Most injuries are accompanied by acute bleeding. Hemostasis is necessary to relieve pain and reduce mortality in these accidents. In recent years, the traditional hemostatic materials, including inorganic, protein-based, polysaccharide-based and synthetic materials have been widely used in the clinic. The most prominent of these are biodegradable collagen sponges (Helistat®, United States), gelatin sponges (Ethicon®, SURGIFOAM®, United States), chitosan (AllaQuixTM, ChitoSAMTM, United States), cellulose (Tabotamp®, SURGICEL®, United States), and the newly investigated extracellular matrix gels, etc. Although these materials have excellent hemostatic properties, they also have their advantages and disadvantages. In this review, the performance characteristics, hemostatic effects, applications and hemostatic mechanisms of various biomaterials mentioned above are presented, followed by several strategies to improve hemostasis, including modification of single materials, blending of multiple materials, design of self-assembled peptides and their hybrid materials. Finally, the exploration of more novel hemostatic biomaterials and relative coagulation mechanisms will be essential for future research on hemostatic methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...