Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 4087, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796822

RESUMEN

By electronically wiring-up living cells with abiotic conductive surfaces, bioelectrochemical systems (BES) harvest energy and synthesize electric-/solar-chemicals with unmatched thermodynamic efficiency. However, the establishment of an efficient electronic interface between living cells and abiotic surfaces is hindered due to the requirement of extremely close contact and high interfacial area, which is quite challenging for cell and material engineering. Herein, we propose a new concept of a single cell electron collector, which is in-situ built with an interconnected intact conductive layer on and cross the individual cell membrane. The single cell electron collector forms intimate contact with the cellular electron transfer machinery and maximizes the interfacial area, achieving record-high interfacial electron transfer efficiency and BES performance. Thus, this single cell electron collector provides a superior tool to wire living cells with abiotic surfaces at the single-cell level and adds new dimensions for abiotic/biotic interface engineering.


Asunto(s)
Electroquímica/métodos , Biopelículas/crecimiento & desarrollo , Catálisis , Electrodos , Microscopía Electroquímica de Rastreo , Microscopía Electrónica de Transmisión , Shewanella/metabolismo , Shewanella/ultraestructura
2.
Bioresour Technol ; 197: 416-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26356112

RESUMEN

Microbial fuel cell (MFC) is considered as a promising green energy source and energy-saving pollutants treatment technology as it integrates pollutant biodegradation with energy extraction. In this work, a facile approach to enhance endogenous biosurfactant production was developed to improve the electron transfer rate and power output of MFC. By overexpression of rhlA, the key gene responsible for rhamnolipids synthesis, over-production of self-synthesized rhamnolipids from Pseudomonas aeruginosa PAO1 was achieved. Strikingly, the increased rhamnolipids production by rhlA overexpression significantly promoted the extracellular electron transfer of P. aeruginosa by enhancing electron shuttle (pyocyanin) production and increasing bacteria attachment on the anode. As a result, the strain with endogenously enhanced rhamnolipids production delivered 2.5 times higher power density output than that of the parent strain. This work substantiated that the enhancement on endogenous biosurfactant production could be a promising approach for improvement on the electricity output of MFC.


Asunto(s)
Fuentes de Energía Bioeléctrica , Glucolípidos/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fuentes de Energía Bioeléctrica/microbiología , Electrodos , Transporte de Electrón , Regulación Bacteriana de la Expresión Génica , Ingeniería Genética/métodos , Glucolípidos/genética , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Pseudomonas aeruginosa/genética , Piocianina/genética , Tensoactivos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...