Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(7): 10958-10967, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35775629

RESUMEN

Implantable sensors with the abilities of real-time healthcare monitoring and auxiliary training are important for exercise-induced or disease-induced muscle and ligament injuries. However, some of these implantable sensors have some shortcomings, such as requiring an external power supply or poor flexibility and stability. Herein, an organogel/silicone fiber-helical sensor based on a triboelectric nanogenerator (OFS-TENG) is developed for power-free and sutureable implantation ligament strain monitoring. The OFS-TENG with high stability and ultrastretchability is composed of an organogel fiber and a silicone fiber intertwined with a double helix structure. The organogel fiber possesses the merits of rapid preparation (15 s), good transparency (>95%), high stretchability (600%), and favorable stability (over 6 months). The OFS-TENG is successfully implanted on the patellar ligament of the rabbit knee for the real-time monitoring of knee ligament stretch and muscle stress, which is expected to provide a solution for real-time diagnosis of muscle and ligament injuries. The prepared self-powered OFS-TENG can monitor data on human muscles and ligaments in real-time.


Asunto(s)
Nanotecnología , Siliconas , Humanos , Conejos , Animales , Suministros de Energía Eléctrica , Monitoreo Fisiológico , Ligamentos
2.
Artículo en Inglés | MEDLINE | ID: mdl-35574831

RESUMEN

Sleep quality plays an essential role in human health and has become an index for assessing physical health. Self-powered, sensitive, noninvasive, comfortable, and low-cost sleep monitoring sensors for monitoring sleep behavior are still in high demand. Here, a pressure-sensitive, noninvasive, and comfortable smart pillow is developed based on a flexible and breathable triboelectric nanogenerator (FB-TENG) sensor array, which can monitor head movement in real time during sleep. The FB-TENG is based on flexible and breathable porous poly(dimethylsiloxane) (PDMS) with a fluorinated ethylene propylene (FEP) powder and exhibits pressure sensitivity and durability. The electrical output of the FB-TENG is further optimized by modifying the porous structure and the FEP powder. Combining the FB-TENG and the flexible printed circuit (FPC), a self-powered pressure sensor array is fabricated to realize touch sensing and motion track monitoring. The smart pillow is formed by laying the self-powered pressure sensor array on an ordinary pillow to realize real-time monitoring of the head position in a static state and head movement trajectory in a dynamic state during sleep. Additionally, the smart pillow also has an early warning function for falling out of bed. This work not only provides a viable sensing device for sleep monitoring but also could be extended to real-time monitoring of some diseases, such as brain diseases and cervical spondylosis, in the future. It is expected to introduce a practical strategy in the real-time mobile healthcare field for disease management.

3.
Research (Wash D C) ; 2022: 9809406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211679

RESUMEN

The importance of ocean exploration and underwater monitoring is becoming vital, due to the abundant biological, mineral, energy, and other resources in the ocean. Here, a self-powered underwater cable-based triboelectric nanogenerator (TENG) is demonstrated for underwater monitoring of mechanical motion/triggering, as well as searching and rescuing in the sea. Using a novel double-layer winding method combined with ferroelectric polarization, a self-powered cable-structured sensor with a stable electrical output has been manufactured, which can accurately respond to a variety of external mechanical stimuli. A self-powered cable sensing network woven using smart cables can comprehensively transmit information, such as the plane position and dive depth of a submersible. More precisely, it can analyze its direction of movement, speed, and path, along with transmitting information such as the submersible's size and momentum. The developed self-powered sensor based on the cable-based TENG not only has low cost and simple structure but also exhibits working accuracy and stability. Finally, the proposed work provides new ideas for future seabed exploration and ocean monitoring.

4.
ACS Nano ; 16(2): 2811-2821, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35098711

RESUMEN

Respiration is a major vital sign, which can be used for early illness diagnosis and physiological monitoring. Wearable respiratory sensors present an exciting opportunity to monitor human respiratory behaviors in a real-time, noninvasive, and comfortable way. Among them, fiber-shaped triboelectric nanogenerators (FS-TENGs) are attractive for their comfort and high degree of freedom. However, the single-electrode FS-TENGs cannot respond to their own tensile strains, and the coaxial double-electrode FS-TENGs show low sensitivity to strain due to structural limitations. Here, a type of helical fiber strain sensor (HFSS) is developed, which can respond to tiny tensile strains. In addition, a smart wearable real-time respiratory monitoring system is developed based on the HFSSs, which can measure some key breathing parameters for disease prevention and medical diagnosis. An intelligent alarm can automatically call a preset mobile phone for help in response to respiratory behavior changes. This work provides an effective helical structure for fabricating highly sensitive strain sensors based on FS-TENGs and develops wearable self-powered real-time respiratory monitoring systems.


Asunto(s)
Dispositivos Electrónicos Vestibles , Suministros de Energía Eléctrica , Humanos , Monitoreo Fisiológico , Sistema Respiratorio
5.
Adv Mater ; 34(21): e2109355, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35083786

RESUMEN

The seamless integration of emerging triboelectric nanogenerator (TENG) technology with traditional wearable textile materials has given birth to the next-generation smart textiles, i.e., textile TENGs, which will play a vital role in the era of Internet of Things and artificial intelligences. However, low output power and inferior sensing ability have largely limited the development of textile TENGs. Among various approaches to improve the output and sensing performance, such as material modification, structural design, and environmental management, a 3D fabric structural scheme is a facile, efficient, controllable, and scalable strategy to increase the effective contact area for contact electrification of textile TENGs without cumbersome material processing and service area restrictions. Herein, the recent advances of the current reported textile TENGs with 3D fabric structures are comprehensively summarized and systematically analyzed in order to clarify their superiorities over 1D fiber and 2D fabric structures in terms of power output and pressure sensing. The forward-looking integration abilities of the 3D fabrics are also discussed at the end. It is believed that the overview and analysis of textile TENGs with distinctive 3D fabric structures will contribute to the development and realization of high-power output micro/nanowearable power sources and high-quality self-powered wearable sensors.

6.
ACS Nano ; 15(11): 18172-18181, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34669393

RESUMEN

Triboelectric nanogenerators (TENGs) are useful for harvesting clean and widely distributed water droplet energy with high efficiency. However, the commonly used polymer films in TENGs for water droplet energy harvesting have the disadvantages of poor breathability, poor skin affinity, and irreparable hydrophobicity, which greatly hinder their wearable uses. Here, we report an all-fabric TENG (F-TENG), which not only has good air permeability and hydrophobic self-repairing properties but also shows effective energy conversion efficiency. The hydrophobic surface composed of SiO2 nanoparticles and poly(vinylidenefluoride-co-hexafluoropropylene)/perfluorodecyltrichlorosilane (PVDF-HFP/FDTS) exhibits a static contact angle of 157° and displays excellent acid and alkali resistance. Because of its low glass transition temperature, PVDF-HFP can facilitate the movement of FDTS molecules to the surface layer under heating conditions, realizing hydrophobic self-repairing performance. Furthermore, with the optimized compositions and structure, the water droplet F-TENG shows 7-fold enhancement of output voltage compared with the conventional single-electrode mode TENG, and a total energy conversion efficiency of 2.9% is achieved. Therefore, the proposed F-TENG can be used in multifunctional wearable devices for raindrop energy harvesting.

7.
ACS Appl Mater Interfaces ; 13(37): 44868-44877, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34506103

RESUMEN

The development of elastic electronic technology has promoted the application of triboelectric nanogenerators (TENGs) in flexible wearable electronics. However, most of the flexible electronics cannot achieve the requirements of being extremely stretchable, transparent, and highly conductive at the same time. Herein, we report a TENG constructed using a double-network polymer ionic conductor sodium alginate/zinc sulfate/poly acrylic-acrylamide (SA-Zn) hydrogel, which exhibited outstanding stretchability (>10,000%), high transparency (>95%), and good conductivity (0.34 S·m-1). The SA-Zn hydrogel TENG (SH-TENG) could harvest energy from typical human movements, such as bending, stretching, and twisting, which could light up 234 green commercial LEDs easily. Additionally, the SH-TENG can be used to prepare a self-powered smart training band sensor for monitoring arm stretching motion. This work may provide an innovative platform for accessing the next generation of sustainable wearable and sports monitoring electronics.

8.
ACS Nano ; 14(11): 15853-15863, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33155470

RESUMEN

Textile-based triboelectric nanogenerators (T-TENGs), combining the functions of energy harvesting and self-powered sensing with advantages of breathability and flexibility, have received intensive attention, which is vital to the rapid advancements in smart textiles. However, there exists few reports of T-TENGs applied to fires under the intelligent era of high requirements for devices with versatility and multiscenario practicability. Here, in combination with flame-retardant conductive cotton fabric, polytetrafluoroethylene-coated cotton fabric, and a divider, a low-cost and environmentally friendly flame-retardant textile-based triboelectric nanogenerator (FT-TENG) is developed, which is endowed with excellent fire resistance and outstanding energy harvesting capabilities. The cotton fabrics treated with a layer-by-layer self-assembly method show great self-extinguishing performance. Besides, the maximum peak power density of the FT-TENG can reach 343.19 mW/m2 under the tapping frequency of 3 Hz. Furthermore, the FT-TENG still keeps 49.2% of the initial electrical output even after being burned at 17 different positions; 34.48% of the electrical output is also retained when the FT-TENG is exposed to 220 °C. Moreover, the FT-TENGs are successfully applied as energy harvesters for firefighters and self-powered sensors for forest self-rescue and fire alarm systems. This work may provide a promising potential for multifunctional smart textiles in energy harvesting, self-powered sensing, and life or property security.

9.
Sci Adv ; 6(26): eaba9624, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637619

RESUMEN

Mimicking the comprehensive functions of human sensing via electronic skins (e-skins) is highly interesting for the development of human-machine interactions and artificial intelligences. Some e-skins with high sensitivity and stability were developed; however, little attention is paid to their comfortability, environmental friendliness, and antibacterial activity. Here, we report a breathable, biodegradable, and antibacterial e-skin based on all-nanofiber triboelectric nanogenerators, which is fabricated by sandwiching silver nanowire (Ag NW) between polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA). With micro-to-nano hierarchical porous structure, the e-skin has high specific surface area for contact electrification and numerous capillary channels for thermal-moisture transfer. Through adjusting the concentration of Ag NW and the selection of PVA and PLGA, the antibacterial and biodegradable capability of e-skins can be tuned, respectively. Our e-skin can achieve real-time and self-powered monitoring of whole-body physiological signal and joint movement. This work provides a previously unexplored strategy for multifunctional e-skins with excellent practicability.


Asunto(s)
Nanofibras , Nanocables , Dispositivos Electrónicos Vestibles , Antibacterianos/farmacología , Humanos , Nanocables/química , Alcohol Polivinílico/química , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...