Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Sports Med ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255827

RESUMEN

Pneumatic resistance training (PRT) facilitates a longer time under tension that might lead to greater changes in body composition when compared to traditional resistance training (TRT), possibly enhancing serum metabolite concentrations indicative of healthy metabolic function. To assess the impact of PRT and TRT on muscular strength, body composition and serum metabolome, sixty-nine men (age: 31.8±7.2 years, height: 179.7±5.4 cm, weight: 81.1±9.9 kg) were randomized into two 10-week intervention groups (PRT:n=24 and TRT:n=24) and one control group (CON:n=21). Serum metabolite concentrations were assessed before and after the training intervention by high-throughput nuclear magnetic resonance. Fat mass and lean mass were obtained by bioimpedance analysis. The training intervention resulted in an increase in LM for both PRT (1.85 ± 2.69%; p=0.003) and TRT (2.72 ±4.53%; p=0.004), while only PRT reduced in body fat percentage (PRT: -5.08±10.76%; p=0.019) statistically significantly. Only in PRT and TRT significant increases in small high-density lipoproteins (S-HDL-L) and small HDL particles (S-HDL-P) were observed. When controlling for fat and lean mass, the effects on S-HDL-L/S-HDL-P diminished. Network analysis may suggest that PRT and TRT result in an increase in network connectivity and robustness. It appears that the observed improvements are associated with changes in body composition.

2.
Med Sci Sports Exerc ; 56(6): 1036-1045, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38247038

RESUMEN

BACKGROUND: This study aimed to assess the response patterns of circulating lipids to exercise and diet interventions in nonalcoholic fatty liver disease (NAFLD). METHODS: The 8.6-month four-arm randomized controlled study comprised 115 NAFLD patients with prediabetes who were assigned to aerobic exercise (AEx; n = 29), low-carbohydrate diet (Diet; n = 28), AEx plus low-carbohydrate diet (AED; n = 29), and nonintervention (NI, n = 29) groups. Hepatic fat content (HFC) was quantified by proton magnetic resonance spectroscopy. Serum lipidomic analytes were measured using liquid chromatography-mass spectrometry. RESULTS: After intervention, the total level of phosphatidylcholine (PC) increased significantly in the AEx group ( P = 0.043), whereas phosphatidylethanolamine (PE) and triacylglycerol decreased significantly in the AED group ( P = 0.046 and P = 0.036, respectively), and phosphatidylserine decreased in the NI group ( P = 0.002). Changes of 21 lipid metabolites were significantly associated with changes of HFC, among which half belonged to PC. Most of the molecules related to insulin sensitivity belonged to sphingomyelin (40 of 79). Controlling for the change of visceral fat, the significant associations between lipid metabolites and HFC remained. In addition, baseline serum lipids could predict the response of HFC to exercise and/or diet interventions (PE15:0/18:0 for AED, area under the curve (AUC) = 0.97; PE22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0 for AEx, AUC = 0.90; and PC14:1(9Z)/19:1(9Z) for Diet, AUC = 0.92). CONCLUSIONS: Changes of lipidome after exercise and/or diet interventions were associated with HFC reductions, which are independent of visceral fat reduction, particularly in metabolites belonging to PC. Importantly, baseline PE could predict the HFC response to exercise, and PC predicted the response to diet. These results indicate that a circulating metabolomics panel can be used to facilitate clinical implementation of lifestyle interventions for NAFLD management.


Asunto(s)
Dieta Baja en Carbohidratos , Ejercicio Físico , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Enfermedad del Hígado Graso no Alcohólico/sangre , Masculino , Femenino , Persona de Mediana Edad , Ejercicio Físico/fisiología , Triglicéridos/sangre , Fosfatidilcolinas/sangre , Lípidos/sangre , Terapia por Ejercicio/métodos , Estado Prediabético/dietoterapia , Estado Prediabético/sangre , Estado Prediabético/terapia , Adulto , Fosfatidiletanolaminas/sangre , Hígado/metabolismo , Lipidómica , Grasa Intraabdominal/metabolismo , Resistencia a la Insulina , Fosfatidilserinas/metabolismo , Esfingomielinas/sangre
3.
Int J Biol Sci ; 19(15): 4849-4864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781518

RESUMEN

Heat stress, clinically known as hyperthermia, is a promising adjunctive modality in cancer treatment. However, the efficacy of hyperthermia as a monotherapy is limited and the underlying mechanism remains poorly understood. Targeting histone modifications is an emerging strategy for cancer therapy, but little is known regarding the role of heat stress in altering these modifications. Here, we report that heat shock inhibits H3K9 acetylation (H3K9ac) via histone deacetylase 6 (HDAC6) regulation. Heat shock inhibits the interaction between HDAC6 and heat shock protein 90 (HSP90), enhances nuclear localization of HDAC6, and promotes HDAC6 phosphorylation, which is regulated by protein phosphatase 2A (PP2A). Combining hyperthermia with HDAC inhibitors vorinostat or panobinostat leads to better anti-cancer effects compared to monotherapy. KEAP1 and DPP7 as genes affected by heat-induced inhibition of H3K9ac, and combining them with hyperthermia can better induce apoptosis in tumor cells. This study reveals previously unknown mechanisms of H3K9ac decreased by heat shock in cancer cells and highlights a potential combinational therapy involving hyperthermia and targeting of these new mechanisms.


Asunto(s)
Hipertermia Inducida , Neoplasias , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Histona Desacetilasas/metabolismo , Acetilación , Ácidos Hidroxámicos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Respuesta al Choque Térmico , Neoplasias/terapia
4.
Nat Commun ; 13(1): 2555, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538056

RESUMEN

Exercise and diet are treatments for nonalcoholic fatty liver disease (NAFLD) and prediabetes, however, how exercise and diet interventions impact gut microbiota in patients is incompletely understood. We previously reported a 8.6-month, four-arm (Aerobic exercise, n = 29; Diet, n = 28; Aerobic exercise + Diet, n = 29; No intervention, n = 29) randomized, singe blinded (for researchers), and controlled intervention in patients with NAFLD and prediabetes to assess the effect of interventions on the primary outcomes of liver fat content and glucose metabolism. Here we report the third primary outcome of the trial-gut microbiota composition-in participants who completed the trial (22 in Aerobic exercise, 22 in Diet, 23 in Aerobic exercise + Diet, 18 in No Intervention). We show that combined aerobic exercise and diet intervention are associated with diversified and stabilized keystone taxa, while exercise and diet interventions alone increase network connectivity and robustness between taxa. No adverse effects were observed with the interventions. In addition, in exploratory ad-hoc analyses we find that not all subjects responded to the intervention in a similar manner, when using differentially altered gut microbe amplicon sequence variants abundance to classify the responders and low/non-responders. A personalized gut microbial network at baseline could predict the individual responses in liver fat to exercise intervention. Our findings suggest an avenue for developing personalized intervention strategies for treatment of NAFLD based on host-gut microbiome ecosystem interactions, however, future studies with large sample size are needed to validate these discoveries. The Trial Registration Number is ISRCTN 42622771.


Asunto(s)
Microbiota , Enfermedad del Hígado Graso no Alcohólico , Estado Prediabético , Dieta , Ejercicio Físico/fisiología , Humanos , Hígado , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/terapia , Estado Prediabético/complicaciones
5.
EBioMedicine ; 72: 103611, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34628356

RESUMEN

BACKGROUND: Cardiovascular diseases may originate in childhood. Biomarkers identifying individuals with increased risk for disease are needed to support early detection and to optimise prevention strategies. METHODS: In this prospective study, by applying a machine learning to high throughput NMR-based metabolomics data, we identified circulating childhood metabolic predictors of adult cardiovascular disease risk (MetS score) in a cohort of 396 females, followed from childhood (mean age 11·2 years) to early adulthood (mean age 18·1 years). The results obtained from the discovery cohort were validated in a large longitudinal birth cohort of females and males followed from puberty to adulthood (n = 2664) and in four cross-sectional data sets (n = 6341). FINDINGS: The identified childhood metabolic signature included three circulating biomarkers, glycoprotein acetyls (GlycA), large high-density lipoprotein phospholipids (L-HDL-PL), and the ratio of apolipoprotein B to apolipoprotein A-1 (ApoB/ApoA) that were associated with increased cardio-metabolic risk in early adulthood (AUC = 0·641‒0·802, all p<0·01). These associations were confirmed in all validation cohorts with similar effect estimates both in females (AUC = 0·667‒0·905, all p<0·01) and males (AUC = 0·734‒0·889, all p<0·01) as well as in elderly patients with and without type 2 diabetes (AUC = 0·517‒0·700, all p<0·01). We subsequently applied random intercept cross-lagged panel model analysis, which suggested bidirectional causal relationship between metabolic biomarkers and cardio-metabolic risk score from childhood to early adulthood. INTERPRETATION: These results provide evidence for the utility of a circulating metabolomics panel to identify children and adolescents at risk for future cardiovascular disease, to whom preventive measures and follow-up could be indicated. FUNDING: This study was financially supported by the Academy of Finland, Ministry of Education of Finland and University of Jyv€askyl€a, the National Nature Science Foundation of China (Grant 31571219), the 111 Project (B17029), the Shanghai Jiao Tong University Zhiyuan Foundation (Grant CP2014013), China Postdoc Scholarship Council (201806230001), the Food and Health Bureau of Hong Kong SAR's Health and Medical Research Fund (HMRF grants 15162161 and 07181036) and the CUHK Direct Grants for Research (2016¢033 and 2018¢034), and a postdoctoral fellowship from K. Carole Ellison (to T.W.). The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. NFBC1966 received financial support from University of Oulu Grant no. 24000692, Oulu University Hospital Grant no. 24301140, ERDF European Regional Development Fund Grant no. 539/2010 A31592. This work was supported by European Union's Horizon 2020 research and innovation programme LongITools 874739.


Asunto(s)
Biomarcadores/sangre , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/metabolismo , Adolescente , Apolipoproteínas A/sangre , Apolipoproteínas A/metabolismo , Apolipoproteínas B/sangre , Apolipoproteínas B/metabolismo , Cohorte de Nacimiento , Niño , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Finlandia , Humanos , Masculino , Estudios Prospectivos , Pubertad/sangre , Pubertad/metabolismo , Factores de Riesgo
7.
R Soc Open Sci ; 6(4): 190418, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31183155

RESUMEN

The production of secondary metabolites, while important for bioengineering purposes, presents a paradox in itself. Though widely existing in plants and bacteria, they have no definite physiological roles. Yet in both native habitats and laboratories, their production appears robust and follows apparent metabolic switches. We show in this work that the enzyme-catalysed process may improve the metabolic stability of the cells. The latter can be responsible for the overall metabolic behaviours such as dynamic metabolic landscape, metabolic switches and robustness, which can in turn affect the genetic formation of the organism in question. Mangrove-derived Streptomyces xiamenensis 318, with a relatively compact genome for secondary metabolism, is used as a model organism in our investigation. Integrated studies via kinetic metabolic modelling, transcriptase measurements and metabolic profiling were performed on this strain. Our results demonstrate that the secondary metabolites increase the metabolic fitness of the organism via stabilizing the underlying metabolic network. And the fluxes directing to NADH, NADPH, acetyl-CoA and glutamate provide the key switches for the overall and secondary metabolism. The information may be helpful for improving the xiamenmycin production on the strain.

8.
Open Biol ; 7(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29118272

RESUMEN

Colorectal cancer (CRC) has complex pathological features that defy the linear-additive reasoning prevailing in current biomedicine studies. In pursuing a mechanistic understanding behind such complexity, we constructed a core molecular-cellular interaction network underlying CRC and investigated its nonlinear dynamical properties. The hypothesis and modelling method has been developed previously and tested in various cancer studies. The network dynamics reveal a landscape of several attractive basins corresponding to both normal intestinal phenotype and robust tumour subtypes, identified by their different molecular signatures. Comparison between the modelling results and gene expression profiles from patients collected at the second affiliated hospital of Zhejiang University is presented as validation. The numerical 'driving' experiment suggests that CRC pathogenesis may depend on pathways involved in gastrointestinal track development and molecules associated with mesenchymal lineage differentiation, such as Stat5, BMP, retinoic acid signalling pathways, Runx and Hox transcription families. We show that the multi-faceted response to immune stimulation and therapies, as well as different carcinogenesis and metastasis routes, can be straightforwardly understood and analysed under such a framework.


Asunto(s)
Neoplasias Colorrectales/genética , Modelos Teóricos , Biología de Sistemas , Estudios de Casos y Controles , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Dinámicas no Lineales , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...