Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 1001, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147896

RESUMEN

Wheat is an important source of minerals for human nutrition and increasing grain mineral content can contribute to reducing mineral deficiencies. Here, we identify QTLs for mineral micronutrients in grain of wheat by determining the contents of six minerals in a total of eleven sample sets of three biparental populations from crosses between A.E. Watkins landraces and cv. Paragon. Twenty-three of the QTLs are mapped in two or more sample sets, with LOD scores above five in at least one set with the increasing alleles for sixteen of the QTLs being present in the landraces and seven in Paragon. Of these QTLs, the number for each mineral varies between three and five and they are located on 14 of the 21 chromosomes, with clusters on chromosomes 5A (four), 6A (three), and 7A (three). The gene content within 5 megabases of DNA on either side of the marker for the QTL with the highest LOD score is determined and the gene responsible for the strongest QTL (chromosome 5A for Ca) identified as an ATPase transporter gene (TraesCS5A02G543300) using mutagenesis. The identification of these QTLs, together with associated SNP markers and candidate genes, will facilitate the improvement of grain nutritional quality.


Asunto(s)
Minerales , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Minerales/análisis , Minerales/metabolismo , Humanos , Grano Comestible/genética , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Cromosomas de las Plantas/genética
2.
J Integr Plant Biol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109951

RESUMEN

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of wheat globally. However, the molecular mechanisms underlying the interactions between F. graminearum and wheat remain unclear. Here, we identified a secreted effector protein, FgEC1, that is induced during wheat infection and is required for F. graminearum virulence. FgEC1 suppressed flg22- and chitin-induced callose deposition and reactive oxygen species (ROS) burst in Nicotiana benthamiana. FgEC1 directly interacts with TaGF14b, which is upregulated in wheat heads during F. graminearum infection. Overexpression of TaGF14b increases FHB resistance in wheat without compromising yield. TaGF14b interacts with NADPH oxidase respiratory burst oxidase homolog D (TaRBOHD) and protects it against degradation by the 26S proteasome. FgEC1 inhibited the interaction of TaGF14b with TaRBOHD and promoted TaRBOHD degradation, thereby reducing TaRBOHD-mediated ROS production. Our findings reveal a novel pathogenic mechanism in which a fungal pathogen acts via an effector to reduce TaRBOHD-mediated ROS production.

3.
J Integr Plant Biol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092779

RESUMEN

Gene innovation plays an essential role in trait evolution. Rhizobial symbioses, the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae, is one of the most attractive evolution events. However, the gene innovations underlying Leguminosae root nodule symbiosis (RNS) remain largely unknown. Here, we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses. We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection. Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways, particular downstream of chalcone synthase (CHS). Among them, Leguminosae-gain type Ⅱ chalcone isomerase (CHI) could be further divided into CHI1A and CHI1B clades, which resulted from the products of tandem duplication. Furthermore, the duplicated CHI genes exhibited exon-intron structural divergences evolved through exon/intron gain/loss and insertion/deletion. Knocking down CHI1B significantly reduced nodulation in Glycine max (soybean) and Medicago truncatula; whereas, knocking down its duplication gene CHI1A had no effect on nodulation. Therefore, Leguminosae-gain type Ⅱ CHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence. This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.

4.
Glob Chang Biol ; 30(8): e17440, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39185562

RESUMEN

The use of plant genetic resources (PGR)-wild relatives, landraces, and isolated breeding gene pools-has had substantial impacts on wheat breeding for resistance to biotic and abiotic stresses, while increasing nutritional value, end-use quality, and grain yield. In the Global South, post-Green Revolution genetic yield gains are generally achieved with minimal additional inputs. As a result, production has increased, and millions of hectares of natural ecosystems have been spared. Without PGR-derived disease resistance, fungicide use would have easily doubled, massively increasing selection pressure for fungicide resistance. It is estimated that in wheat, a billion liters of fungicide application have been avoided just since 2000. This review presents examples of successful use of PGR including the relentless battle against wheat rust epidemics/pandemics, defending against diseases that jump species barriers like blast, biofortification giving nutrient-dense varieties and the use of novel genetic variation for improving polygenic traits like climate resilience. Crop breeding genepools urgently need to be diversified to increase yields across a range of environments (>200 Mha globally), under less predictable weather and biotic stress pressure, while increasing input use efficiency. Given that the ~0.8 m PGR in wheat collections worldwide are relatively untapped and massive impacts of the tiny fraction studied, larger scale screenings and introgression promise solutions to emerging challenges, facilitated by advanced phenomic and genomic tools. The first translocations in wheat to modify rhizosphere microbiome interaction (reducing biological nitrification, reducing greenhouse gases, and increasing nitrogen use efficiency) is a landmark proof of concept. Phenomics and next-generation sequencing have already elucidated exotic haplotypes associated with biotic and complex abiotic traits now mainstreamed in breeding. Big data from decades of global yield trials can elucidate the benefits of PGR across environments. This kind of impact cannot be achieved without widescale sharing of germplasm and other breeding technologies through networks and public-private partnerships in a pre-competitive space.


Asunto(s)
Seguridad Alimentaria , Fitomejoramiento , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Resistencia a la Enfermedad/genética , Pandemias , Fungicidas Industriales , Ambiente
5.
J Integr Plant Biol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177373

RESUMEN

Eleocharis vivipara, an amphibious sedge in the Cyperaceae family, has several remarkable properties, most notably its alternate use of C3 photosynthesis underwater and C4 photosynthesis on land. However, the absence of genomic data has hindered its utility for evolutionary and genetic research. Here, we present a high-quality genome for E. vivipara, representing the first chromosome-level genome for the Eleocharis genus, with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes. Its Hi-C pattern, chromosome clustering results, and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n = 4x = 20. Phylogenetic analysis suggests that E. vivipara diverged from Cyperus esculentus approximately 32.96 million years ago (Mya), and underwent a whole-genome duplication (WGD) about 3.5 Mya. Numerous fusion and fission events were identified between the chromosomes of E. vivipara and its close relatives. We demonstrate that E. vivipara has holocentromeres, a chromosomal feature which can maintain the stability of such chromosomal rearrangements. Experimental transplantation and cross-section studies showed its terrestrial culms developed C4 Kranz anatomy with increased number of chloroplasts in the bundle sheath (BS) cells. Gene expression and weighted gene co-expression network analysis (WGCNA) showed overall elevated expression of core genes associated with the C4 pathway, and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency. We found evidence of mixed nicotinamide adenine dinucleotide - malic enzyme and phosphoenolpyruvate carboxykinase type C4 photosynthesis in E. vivipara, and hypothesize that the evolution of C4 photosynthesis predates the WGD event. The mixed type is dominated by subgenome A and supplemented by subgenome B. Collectively, our findings not only shed light on the evolution of E. vivipara and karyotype within the Cyperaceae family, but also provide valuable insights into the transition between C3 and C4 photosynthesis, offering promising avenues for crop improvement and breeding.

6.
Nature ; 632(8026): 823-831, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885696

RESUMEN

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker-trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security.


Asunto(s)
Biodiversidad , Productos Agrícolas , Variación Genética , Fenotipo , Fitomejoramiento , Triticum , Alelos , Productos Agrícolas/genética , Introgresión Genética , Variación Genética/genética , Genoma de Planta/genética , Haplotipos/genética , Desequilibrio de Ligamiento/genética , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo/genética , Triticum/clasificación , Triticum/genética , Secuenciación Completa del Genoma , Filogenia , Estudios de Asociación Genética , Seguridad Alimentaria
7.
Nat Plants ; 10(6): 984-993, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38898165

RESUMEN

Wheat blast, caused by the fungus Magnaporthe oryzae, threatens global cereal production since its emergence in Brazil in 1985 and recently spread to Bangladesh and Zambia. Here we demonstrate that the AVR-Rmg8 effector, common in wheat-infecting isolates, is recognized by the gene Pm4, previously shown to confer resistance to specific races of Blumeria graminis f. sp. tritici, the cause of powdery mildew of wheat. We show that Pm4 alleles differ in their recognition of different AVR-Rmg8 alleles, and some confer resistance only in seedling leaves but not spikes, making it important to select for those alleles that function in both tissues. This study has identified a gene recognizing an important virulence factor present in wheat blast isolates in Bangladesh and Zambia and represents an important first step towards developing durably resistant wheat cultivars for these regions.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Enfermedades de las Plantas , Triticum , Triticum/microbiología , Triticum/genética , Triticum/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Ascomicetos/fisiología , Genes de Plantas , Alelos , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
aBIOTECH ; 5(1): 71-93, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38576433

RESUMEN

The garden pea (Pisum sativum L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.

9.
Plant Biotechnol J ; 22(8): 2235-2247, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38520342

RESUMEN

High-throughput genotyping arrays have provided a cost-effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384-well format Axiom array than previously possible. Here we describe a novel Axiom genotyping array, the 'Triticum aestivum Next Generation' array (TaNG), largely derived from whole genome skim sequencing of 204 elite wheat lines and 111 wheat landraces taken from the Watkins 'Core Collection'. We used a novel haplotype optimization approach to select SNPs with the highest combined varietal discrimination and a design iteration step to test and replace SNPs which failed to convert to reliable markers. The final design with 43 372 SNPs contains a combination of haplotype-optimized novel SNPs and legacy cross-platform markers. We show that this design has an improved distribution of SNPs compared to previous arrays and can be used to generate genetic maps with a significantly higher number of distinct bins than our previous array. We also demonstrate the improved performance of TaNGv1.1 for Genome-wide association studies (GWAS) and its utility for Copy Number Variation (CNV) analysis. The array is commercially available with supporting marker annotations and initial genotyping results freely available.


Asunto(s)
Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple , Triticum , Triticum/genética , Polimorfismo de Nucleótido Simple/genética , Técnicas de Genotipaje/métodos , Genoma de Planta/genética , Haplotipos/genética , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
Plant Physiol Biochem ; 206: 108191, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016367

RESUMEN

Nitrate, the primary form of nitrogen absorbed by plants, supplies essential compounds for plant growth and development. Peas are frequently used as rotation crops to improve and stabilize soil fertility. However, the determinants of nitrate uptake and transport in peas remain largely unclear, primarily due to the pea genome's complexity and size. In this study, we utilized the complete genomic information of peas to identify three PsNRT2 family genes within the pea genome. We conducted a comprehensive examination of their protein conserved domains, physicochemical properties, gene structure, and phylogenetic evolution, revealing PsNRT2.3 as the potential key gene for high-affinity nitrate transport in peas. Subcellular localization studies indicated that PsNRT2.3 resides on the plasma membrane. Using hairy root transformation, we noted the predominant expression of PsNRT2.3 in the root stele, which is inducible by nitrate. Our experiments involving overexpression and silencing methods further confirmed that PsNRT2.3 plays a key role in enhancing nitrate uptake in peas. Additionally, our work showed that PsNAR could interact with PsNRT2.3, modulating pea nitrate uptake. After silencing PsNAR, even with the normal expression of PsNRT2.3, the ability of peas to absorb nitrate was significantly reduced. In conclusion, this study identifies the high-affinity nitrate transport gene PsNRT2.3 in peas and clarifies its critical role and regulatory network in nitrate transport, contributing to a new understanding of nitrate utilization in peas.


Asunto(s)
Nitratos , Pisum sativum , Pisum sativum/genética , Nitratos/metabolismo , Filogenia , Nitrógeno/metabolismo
11.
Plant Commun ; 5(1): 100671, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553834

RESUMEN

Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.


Asunto(s)
Fabaceae , Simbiosis , Simbiosis/genética , Filogenia , Nitrógeno , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Fabaceae/microbiología
12.
Mol Plant ; 16(8): 1252-1268, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37501370

RESUMEN

Advances in DNA sequencing technology have sparked a genomics revolution, driving breakthroughs in plant genetics and crop breeding. Recently, the focus has shifted from cataloging genetic diversity in plants to exploring their functional significance and delivering beneficial alleles for crop improvement. This transformation has been facilitated by the increasing adoption of whole-genome resequencing. In this review, we summarize the current progress of population-based genome resequencing studies and how these studies affect crop breeding. A total of 187 land plants from 163 countries have been resequenced, comprising 54 413 accessions. As part of resequencing efforts 367 traits have been surveyed and 86 genome-wide association studies have been conducted. Economically important crops, particularly cereals, vegetables, and legumes, have dominated the resequencing efforts, leaving a gap in 49 orders, including Lycopodiales, Liliales, Acorales, Austrobaileyales, and Commelinales. The resequenced germplasm is distributed across diverse geographic locations, providing a global perspective on plant genomics. We highlight genes that have been selected during domestication, or associated with agronomic traits, and form a repository of candidate genes for future research and application. Despite the opportunities for cross-species comparative genomics, many population genomic datasets are not accessible, impeding secondary analyses. We call for a more open and collaborative approach to population genomics that promotes data sharing and encourages contribution-based credit policy. The number of plant genome resequencing studies will continue to rise with the decreasing DNA sequencing costs, coupled with advances in analysis and computational technologies. This expansion, in terms of both scale and quality, holds promise for deeper insights into plant trait genetics and breeding design.


Asunto(s)
Genoma de Planta , Humanos , Animales , Metagenómica , Análisis de Secuencia de ADN , Estudio de Asociación del Genoma Completo , Selección Genética , Filogenia , Estrés Fisiológico , Adaptación Fisiológica
13.
Nutrients ; 15(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36904089

RESUMEN

Mitochondria-dependent ferroptosis plays an important role in the pathogenesis of doxorubicin (DOX)-induced cardiotoxicity (DIC), which remains a clinical challenge due to the lack of effective interventions. Cerium oxide (CeO2), a representative nanozyme, has attracted much attention because of its antioxidant properties. This study evaluated CeO2-based nanozymes for the prevention and treatment of DIC in vitro and in vivo by adding nanoparticles (NPs), which were synthesized by biomineralization, to the culture or giving them to the mice, and the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) was used as control. The prepared NPs exhibited an excellent antioxidant response and glutathione peroxidase 4 (GPX4)-depended bioregulation, with the additional merits of bio-clearance and long retention in the heart. The experiments showed that NP treatment could significantly reverse myocardial structural and electrical remodeling, and reduce myocardial necrosis. These cardioprotective therapeutic effects were associated with their ability to alleviate oxidative stress, mitochondrial lipid peroxidation, and mitochondrial membrane potential damage, with a superior efficiency to the Fer-1. The study also found that the NPs significantly restored the expression of GPX4 and mitochondrial-associated proteins, thereby restoring mitochondria-dependent ferroptosis. Therefore, the study provides some insights into the role of ferroptosis in DIC. It also shows that CeO2-based nanozymes could be a promising prevention and treatment candidate as a novel cardiomyocyte ferroptosis protector to mitigate DIC and improve prognosis and quality of life in cancer patients.


Asunto(s)
Antioxidantes , Ferroptosis , Ratones , Animales , Antioxidantes/farmacología , Muerte Celular , Cardiotoxicidad , Biomimética , Calidad de Vida , Doxorrubicina/farmacología
14.
Plant Physiol ; 191(1): 233-251, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36200882

RESUMEN

Flaveria is a leading model for C4 plant evolution due to the presence of a dozen C3-C4 intermediate species, many of which are associated with a phylogenetic complex centered around Flaveria linearis. To investigate C4 evolution in Flaveria, we updated the Flaveria phylogeny and evaluated gas exchange, starch δ13C, and activity of C4 cycle enzymes in 19 Flaveria species and 28 populations within the F. linearis complex. A principal component analysis identified six functional clusters: (1) C3, (2) sub-C2, (3) full C2, (4) enriched C2, (5) sub-C4, and (6) fully C4 species. The sub-C2 species lacked a functional C4 cycle, while a gradient was present in the C2 clusters from little to modest C4 cycle activity as indicated by δ13C and enzyme activities. Three Yucatan populations of F. linearis had photosynthetic CO2 compensation points equivalent to C4 plants but showed little evidence for an enhanced C4 cycle, indicating they have an optimized C2 pathway that recaptures all photorespired CO2 in the bundle sheath (BS) tissue. All C2 species had enhanced aspartate aminotransferase activity relative to C3 species and most had enhanced alanine aminotransferase activity. These aminotransferases form aspartate and alanine from glutamate and in doing so could help return photorespiratory nitrogen (N) from BS to mesophyll cells, preventing glutamate feedback onto photorespiratory N assimilation. Their use requires upregulation of parts of the C4 metabolic cycle to generate carbon skeletons to sustain N return to the mesophyll, and thus could facilitate the evolution of the full C4 photosynthetic pathway.


Asunto(s)
Asteraceae , Flaveria , Flaveria/genética , Flaveria/metabolismo , Filogenia , Asteraceae/metabolismo , Dióxido de Carbono/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Fotosíntesis/genética , Plantas/metabolismo
16.
Mol Plant ; 15(11): 1641-1645, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36262045
17.
Nat Plants ; 8(9): 1024-1037, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36050462

RESUMEN

Euphyllophytes encompass almost all extant plants, including two sister clades, ferns and seed plants. Decoding genomes of ferns is the key to deep insight into the origin of euphyllophytes and the evolution of seed plants. Here we report a chromosome-level genome assembly of Adiantum capillus-veneris L., a model homosporous fern. This fern genome comprises 30 pseudochromosomes with a size of 4.8-gigabase and a contig N50 length of 16.22 Mb. Gene co-expression network analysis uncovered that homospore development in ferns has relatively high genetic similarities with that of the pollen in seed plants. Analysing fern defence response expands understanding of evolution and diversity in endogenous bioactive jasmonates in plants. Moreover, comparing fern genomes with those of other land plants reveals changes in gene families important for the evolutionary novelties within the euphyllophyte clade. These results lay a foundation for studies on fern genome evolution and function, as well as the origin and evolution of euphyllophytes.


Asunto(s)
Adiantum , Helechos , Adiantum/genética , Helechos/genética , Genoma de Planta , Filogenia
18.
Front Plant Sci ; 13: 927407, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845648

RESUMEN

Haplotype identification, characterization and visualization are important for large-scale analysis and use in population genomics. Many tools have been developed to visualize haplotypes, but it is challenging to display both the pattern of haplotypes and the genotypes for each single SNP in the context of a large amount of genomic data. Here, we describe the tool HAPPE, which uses the agglomerative hierarchical clustering algorithm to characterize and visualize the genotypes and haplotypes in a phylogenetic context. The tool displays the plots by coloring the cells and/or their borders in Excel tables for any given gene and genomic region of interest. HAPPE facilitates informative displays wherein data in plots are easy to read and access. It allows parallel display of several lines of values, such as phylogenetic trees, P values of GWAS, the entry of genes or SNPs, and the sequencing depth at each position. These features are informative for the detection of insertion/deletions or copy number variations. Overall, HAPPE provides editable plots consisting of cells in Excel tables, which are user-friendly to non-programmers. This pipeline is coded in Python and is available at https://github.com/fengcong3/HAPPE.

19.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35698834

RESUMEN

Accurate prediction of open reading frames (ORFs) is important for studying and using genome sequences. Ribosomes move along mRNA strands with a step of three nucleotides and datasets carrying this information can be used to predict ORFs. The ribosome-protected footprints (RPFs) feature a significant 3-nt periodicity on mRNAs and are powerful in predicting translating ORFs, including small ORFs (sORFs), but the application of RPFs is limited because they are too short to be accurately mapped in complex genomes. In this study, we found a significant 3-nt periodicity in the datasets of populational genomic variants in coding sequences, in which the nucleotide diversity increases every three nucleotides. We suggest that this feature can be used to predict ORFs and develop the Python package 'OrfPP', which recovers ~83% of the annotated ORFs in the tested genomes on average, independent of the population sizes and the complexity of the genomes. The novel ORFs, including sORFs, identified from single-nucleotide polymorphisms are supported by protein mass spectrometry evidence comparable to that of the annotated ORFs. The application of OrfPP to tetraploid cotton and hexaploid wheat genomes successfully identified 76.17% and 87.43% of the annotated ORFs in the genomes, respectively, as well as 4704 sORFs, including 1182 upstream and 2110 downstream ORFs in cotton and 5025 sORFs, including 232 upstream and 234 downstream ORFs in wheat. Overall, we propose an alternative and supplementary approach for ORF prediction that can extend the studies of sORFs to more complex genomes.


Asunto(s)
Ribosomas , Genoma , Sistemas de Lectura Abierta , Ribosomas/genética , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Polimorfismo de Nucleótido Simple
20.
Plant Genome ; 15(3): e20221, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35644986

RESUMEN

Bread wheat (Triticum aestivum L.) is one of humanity's most important staple crops, characterized by a large and complex genome with a high level of gene presence-absence variation (PAV) between cultivars, hampering genomic approaches for crop improvement. With the growing global population and the increasing impact of climate change on crop yield, there is an urgent need to apply genomic approaches to accelerate wheat breeding. With recent advances in DNA sequencing technology, a growing number of high-quality reference genomes are becoming available, reflecting the genetic content of a diverse range of cultivars. However, information on the presence or absence of genomic regions has been hard to visualize and interrogate because of the size of these genomes and the lack of suitable bioinformatics tools. To address this limitation, we have produced a wheat pangenome graph maintained within an online database to facilitate interrogation and comparison of wheat cultivar genomes. The database allows users to visualize regions of the pangenome to assess PAV between bread wheat genomes.


Graph pangenomes represent more genomic variants than reference genomes. We present a wheat graph pangenome based on 16 public assemblies. We present Wheat Panache, an online visual representation of this graph. Wheat Panache lets users search the graph for presence-absence variants. We also distribute the graph preindexed for Giraffe utilization.


Asunto(s)
Pan , Triticum , Genoma de Planta , Fitomejoramiento , Análisis de Secuencia de ADN , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...