RESUMEN
OBJECTIVE: To compare the efficacy of exercise, metformin and their combination on glucose metabolism in individuals with abnormal glycaemic control. DESIGN: Systematic review and network meta-analysis. DATA SOURCES: Embase, Web of Science, PubMed/MEDLINE and SPORTDiscus. ELIGIBILITY CRITERIA: Randomised controlled trials involving exercise, metformin or their combined treatments in individuals with prediabetes or type 2 diabetes mellitus (T2DM) were included. Outcomes included haemoglobin A1c (HbA1c), 2-hour glucose during oral glucose tolerance test, fasting glucose, fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS: 407 articles with 410 randomised controlled trials (n=33 802) were included. In prediabetes, the exercise showed greater efficacy than metformin on HbA1c levels (mean difference -0.16%, 95% CI (-0.23 to -0.09) vs -0.10%, 95% CI (-0.21 to 0.02)), 2-hour glucose (-0.68 mmol/L, 95% CI (-0.97 to -0.39) vs 0.01 mmol/L, 95% CI (-0.38 to 0.41)) and HOMA-IR (-0.54, 95% CI (-0.71 to -0.36) vs -0.23, 95% CI (-0.55 to 0.10)), while the efficacy on fasting glucose was comparable (-0.26 mmol/L, 95% CI (-0.32 to -0.19) vs -0.33 mmol/L, 95% CI (-0.45 to -0.21)). In T2DM, metformin was more efficacious than exercise on HbA1c (-0.88%, 95% CI (-1.07 to -0.69) vs -0.48%, 95% CI (-0.58 to -0.38)), 2-hour glucose (-2.55 mmol/L, 95% CI (-3.24 to -1.86) vs -0.97 mmol/L, 95% CI (-1.52 to -0.42)) and fasting glucose (-1.52 mmol/L, 95% CI (-1.73 to -1.31) vs -0.85 mmol/L, 95% CI (-0.96 to -0.74)); exercise+metformin also showed greater efficacy in improving HbA1c (-1.23%, 95% CI (-2.41 to -0.05)) and fasting glucose (-2.02 mmol/L, 95% CI (-3.31 to -0.74)) than each treatment alone. However, the efficacies were modified by exercise modality and metformin dosage. CONCLUSION: Exercise, metformin and their combination are efficacious in improving glucose metabolism in both prediabetes and T2DM. The efficacy of exercise appears to be superior to metformin in prediabetes, but metformin appears to be superior to exercise in patients with T2DM. PROSPERO REGISTRATION NUMBER: CRD42023400622.
RESUMEN
Diabetic wound, which is chronic skin disease, poses a significant challenge in clinical practice because of persistent inflammation and impaired angiogenesis. Recently, hydrogen has emerged as a novel therapeutic agent due to its superior antioxidant and anti-inflammatory properties. In this study, we engineered a poly (lactic-co-glycolic acid) (PLGA) electrospun nanofibre membrane loaded with citric acid (CA) and iron (Fe) nanoparticles, referred to as Fe@PLGA + CA. Our in vitro assays demonstrated that the Fe@PLGA + CA membrane continuously generated and released hydrogen molecules via a chemical reaction between Fe and CA in an acidic microenvironment created by CA. We also discovered that hydrogen can ameliorate fibroblast migration disorders by reducing the levels of matrix metalloproteinase 9 (MMP9). Furthermore, we confirmed that hydrogen can scavenge or biochemically neutralise accumulated reactive oxygen species (ROS), inhibit pro-inflammatory responses, and induce anti-inflammatory reactions. This, in turn, promotes vessel formation, wound-healing and accelerates skin regeneration. These findings open new possibilities for using elemental iron in skin dressings and bring us one step closer to implementing hydrogen-releasing biomedical materials in clinical practice.
Asunto(s)
Hidrógeno , Nanofibras , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Nanofibras/química , Hidrógeno/química , Hidrógeno/farmacología , Animales , Hierro/química , Nanopartículas del Metal/química , Membranas Artificiales , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
BACKGROUND: This study aimed to assess the response patterns of circulating lipids to exercise and diet interventions in nonalcoholic fatty liver disease (NAFLD). METHODS: The 8.6-month four-arm randomized controlled study comprised 115 NAFLD patients with prediabetes who were assigned to aerobic exercise (AEx; n = 29), low-carbohydrate diet (Diet; n = 28), AEx plus low-carbohydrate diet (AED; n = 29), and nonintervention (NI, n = 29) groups. Hepatic fat content (HFC) was quantified by proton magnetic resonance spectroscopy. Serum lipidomic analytes were measured using liquid chromatography-mass spectrometry. RESULTS: After intervention, the total level of phosphatidylcholine (PC) increased significantly in the AEx group ( P = 0.043), whereas phosphatidylethanolamine (PE) and triacylglycerol decreased significantly in the AED group ( P = 0.046 and P = 0.036, respectively), and phosphatidylserine decreased in the NI group ( P = 0.002). Changes of 21 lipid metabolites were significantly associated with changes of HFC, among which half belonged to PC. Most of the molecules related to insulin sensitivity belonged to sphingomyelin (40 of 79). Controlling for the change of visceral fat, the significant associations between lipid metabolites and HFC remained. In addition, baseline serum lipids could predict the response of HFC to exercise and/or diet interventions (PE15:0/18:0 for AED, area under the curve (AUC) = 0.97; PE22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0 for AEx, AUC = 0.90; and PC14:1(9Z)/19:1(9Z) for Diet, AUC = 0.92). CONCLUSIONS: Changes of lipidome after exercise and/or diet interventions were associated with HFC reductions, which are independent of visceral fat reduction, particularly in metabolites belonging to PC. Importantly, baseline PE could predict the HFC response to exercise, and PC predicted the response to diet. These results indicate that a circulating metabolomics panel can be used to facilitate clinical implementation of lifestyle interventions for NAFLD management.
Asunto(s)
Dieta Baja en Carbohidratos , Ejercicio Físico , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Enfermedad del Hígado Graso no Alcohólico/sangre , Masculino , Femenino , Persona de Mediana Edad , Ejercicio Físico/fisiología , Triglicéridos/sangre , Fosfatidilcolinas/sangre , Lípidos/sangre , Terapia por Ejercicio/métodos , Estado Prediabético/dietoterapia , Estado Prediabético/sangre , Estado Prediabético/terapia , Adulto , Fosfatidiletanolaminas/sangre , Hígado/metabolismo , Lipidómica , Grasa Intraabdominal/metabolismo , Resistencia a la Insulina , Fosfatidilserinas/metabolismo , Esfingomielinas/sangreRESUMEN
We investigated the ecological validity of an inertial measurement unit (IMU) (Vmaxpro) to assess the movement velocity (MV) during a 1-repetition maximum (1RM) test and for the prediction of load-velocity (L-V) variables, as well as the ecological intra- day and inter-day reliability during free-weight bench press (BP) and squat (SQ). Furthermore, we provide recommendations for the practical use of the sensor. Twenty-three strength-trained men completed an incremental 1RM test, whereas seventeen men further participated in another 3 sessions consisting of 3 repetitions with 4 different loads (30, 50, 70 and 90% of 1RM) to assess validity and intra- and inter-day reliability, respectively. The MV was assessed using the Vmaxpro and a 3D motion capture system (MoCap). L-V variables and the 1RM were calculated based on submaximal velocities. The Vmaxpro showed high validity during the 1RM test for BP (r = 0.935) and SQ (r = 0.900), but with decreasing validity at lower MVs. The L-V variables and the 1RM demonstrated high validity for BP (r = 0.808-0.942) and SQ (r = 0.615-0.741) with a systematic overestimation. Coefficients of variance for intra- and inter-day reliability ranged from 2.4% to 9.7% and from 3.2% to 8.6% for BP and SQ, respectively. The Vmaxpro appears valid at high and moderately valid at low MVs. Depending on the required degree of accuracy, the sensor may be sufficient for the prediction of L-V variables and the 1RM. Our data indicate the sensor to be suitable for monitoring changes in MVs within and between training sessions.
RESUMEN
Introduction: Aging involves many physiological processes that lead to decreases in muscle mass and increases in fat mass. While regular exercise can counteract such negative body composition outcomes, masters athletes maintain high levels of exercise throughout their lives. This provides a unique model to assess the impact of inherent aging. The present study compared lean mass and fat mass in young and masters athletes from different sports to age-matched non-athletic individuals. Methods: Participants included young (20-39 years, n = 109) and older (70-89 years, n = 147) competitive male athletes, and 147 healthy age-matched controls (young = 53, older = 94 males). Athletes were separated into strength (e.g., weightlifters, powerlifters), sprint (e.g., sprint runners, jumpers) and endurance (e.g., long-distance runners, cross-country skiers) athletic disciplines. Body composition was assessed by dual-energy x-ray absorptiometry (DXA). Upper and lower limb lean mass was combined for appendicular lean mass as well as appendicular lean mass index (ALMI; kg/m2). Individuals' scores were assessed against established cut-offs for low muscle mass, obesity, and sarcopenic obesity to determine prevalence in each group. Results: ALMI was greater in young strength (0.81-2.36â kg/m2, â¼15% and 1.24-2.74â kg/m2, â¼19%) and sprint (95% CI = 0.51-1.61â kg/m2, â¼11% and 0.96-1.97â kg/m2, â¼15%) athletes than in endurance and controls, respectively (all P < 0.001). In masters athletes, only strength athletes had greater ALMI than endurance athletes, but both older strength and sprint athletes had greater ALMI than older controls (0.42-1.27â kg/m2, â¼9% and 0.73-1.67â kg/m2, â¼13%, respectively, both P < 0.001). Fat mass was significantly lower in sprint and endurance athletes compared to strength athletes and controls in both age-groups. Sarcopenic obesity was identified in one young (2%) and eighteen (19%) older controls, while only two older endurance athletes (3%) and one older strength athlete (2%) were identified. Discussion: Lifelong competitive sport participation leads to lower prevalence of sarcopenic obesity than a recreationally active lifestyle. This is achieved in strength athletes by emphasizing muscle mass, while sprint and endurance athletes demonstrate low fat mass levels. However, all older athlete groups showed higher fat mass than the young groups, suggesting that exercise alone may not be sufficient to manage fat mass.
RESUMEN
Objective: This study aimed to investigate directional influences in the association between adiposity and physical activity (PA) from pre-puberty to early adulthood. Methods: In the Calex-study, height, weight, body fat and leisure-time physical activity (LTPA) were measured at age11.2-years, 13.2-years and 18.3-years in 396 Finnish girls. Body fat was measured by dual-energy X-ray absorptiometry, calculating fat mass index (FMI) as total fat mass in kilograms divided by height in meters squared. LTPA level was evaluated using a physical activity questionnaire. In the European Youth Heart Study (EYHS), height, weight and habitual PA were measured at age 9.6-years, 15.7-years and 21.8-years in 399 Danish boys and girls. Habitual PA and sedentary behaviour were assessed with an accelerometer. Directional influences of adiposity and PA were examined using a bivariate cross-lagged path panel model. Results: The temporal stability of BMI from pre-puberty to early adulthood was higher than the temporal stability of PA or physical inactivity over the same time period both in girls and boys. In the Calex-study, BMI and FMI at age 11.2-years were both directly associated with LTPA at age 13.2-years (ß = 0.167, p = 0.005 and ß = 0.167, p = 0.005, respectively), whereas FMI at age 13.2-years showed an inverse association with LTPA at age 18.3-years (ß = - 0.187, p = 0.048). However, earlier LTPA level was not associated with subsequent BMI or FMI. In the EYHS, no directional association was found for physical inactivity, light-, moderate-, and vigorous-PA with BMI during the follow-up in girls. In boys, BMI at age 15.7-years was directly associated with moderate PA (ß = 0.301, p = 0.017) at age 21.8-years, while vigorous PA at age 15.7-years showed inverse associations with BMI at age 21.8-years (ß = - 0.185, p = 0.023). Conclusion: Our study indicates that previous fatness level is a much stronger predictor of future fatness than level of leisure-time or habitual physical activity during adolescence. The directional associations between adiposity and physical activity are not clear during adolescence, and may differ between boys and girls depending on pubertal status.
Asunto(s)
Adiposidad , Ejercicio Físico , Masculino , Femenino , Adolescente , Humanos , Adulto , Niño , Adulto Joven , Estudios Longitudinales , Índice de Masa Corporal , Obesidad , PubertadRESUMEN
Concurrent exercise and metformin administration may reduce the acute and chronic effects of exercise on glucose metabolism in the patients with type 2 diabetes (T2D). However, several studies suggest that combing metformin and exercise treatment may have neither additive effect nor even cause adverse effects in T2D patients. This case report aimed to highlight the challenges associated with prescribing exercise to type 2 diabetes patients undergoing metformin treatment. A 67-years old woman was followed-up for five months, including assessment of the acute and chronic glucose and lactate metabolism induced by concomitant exercise and metformin. The findings were four-fold: 1) During a high-intensity interval training bout, blood glucose systematically decreased, while blood lactate concentrations fluctuated randomly; 2) Basal blood lactate levels were well above 2 mmol/L on days with medication only; 3) Combined exercise and metformin administration induced additive effects on the normalization of glucose and 4) high levels of physical activity had a positive impact on the continuous glucose fluctuations, while decreased levels of physical activity induced a large fluctuation of glucose due to home confinement of an infectious disease caused by the SARS-CoV-2 virus. Our findings showed that when combined with exercise and metformin treatment for T2D patients, exercise may contribute to improving glycemic control while metformin may elevate lactate levels in the long term. The observed results underline the need to prescribe exercise and monitor lactate levels for reducing possible risks associated with metformin treatment and reinforce the importance of tailoring exercise therapy.
RESUMEN
CONTEXT: It remains uncertain whether aging before late adulthood and menopause are associated with fat-free mass and fat mass-adjusted resting energy expenditure (REEadj). OBJECTIVES: We investigated whether REEadj differs between middle-aged and younger women and between middle-aged women with different menopausal statuses. We repeated the age group comparison between middle-aged mothers and their daughters to partially control for genotype. We also explored whether serum estradiol and FSH concentrations explain REEadj in midlife. METHODS: We divided 120 women, including 16 mother-daughter pairs, into age groups; group I (n = 26) consisted of participants aged 17 to 21, group II (n = 35) of those aged 22 to 38, and group III (n = 59) of those aged 41 to 58 years. The women in group III were further categorized as pre- or perimenopausal (n = 19), postmenopausal (n = 30), or postmenopausal hormone therapy users (n = 10). REE was assessed using indirect calorimetry, body composition using dual-energy X-ray absorptiometry, and hormones using immunoassays. RESULTS: The REEadj of group I was 126 kcal/day [95% confidence interval (CI): 93-160] higher than that of group III, and the REEadj of group II was 88 kcal/day (95% CI: 49-127) higher. Furthermore, daughters had a 100 kcal/day (95% CI: 63-138 kcal/day) higher REEadj than their middle-aged mothers (all P < .001). In group III, REEadj was not lower in postmenopausal women and did not vary by sex hormone concentrations. CONCLUSIONS: We demonstrated that REEadj declines with age in women before late adulthood, also when controlling partially for genetic background, and that menopause may not contribute to this decline.
Asunto(s)
Envejecimiento , Menopausia , Persona de Mediana Edad , Humanos , Femenino , Adulto , Metabolismo Energético , Composición Corporal , Calorimetría IndirectaRESUMEN
ABSTRACT: Feuerbacher, JF, Jacobs, MW, Dragutinovic, B, Goldmann, J-P, Cheng, S, and Schumann, M. Validity and test-retest reliability of the Vmaxpro sensor for evaluation of movement velocity in the deep squat. J Strength Cond Res 37(1): 35-40, 2023-We aimed at assessing the validity and test-retest reliability of the inertial measurement unit-based Vmaxpro sensor compared with a Vicon 3D motion capture system and the T-Force sensor during an incremental 1-repetition maximum (1RM) test and at submaximal loads. Nineteen subjects reported to the laboratory for the 1RM test sessions, whereas 15 subjects carried out another 3 sessions consisting of 3 repetitions with 4 different intensities (30, 50, 70, and 90% of 1RM) to determine the intra- and interday reliability. The Vmaxpro sensor showed high validity (Vicon: R2 = 0.935; T-Force: R2 = 0.968) but an overestimation of the mean velocities (MVs) of 0.06 ± 0.08 m·s-1 and 0.06 ± 0.06 m·s-1 compared with Vicon and T-Force, respectively. Regression analysis indicated a systematic bias that is increasing with higher MVs. The intraclass correlation coefficients (ICCs) for Vmaxpro were moderate to high for intraday (ICC: 0.662-0.938; p ≤ 0.05) and for interday (ICC: 0.568-0.837; p ≤ 0.05) reliability, respectively. The Vmaxpro is a valid and reliable measurement device that can be used to monitor movement velocities within a training session. However, practitioners should be cautious when assessing movement velocities on separate days because of the moderate interday reliability.
Asunto(s)
Entrenamiento de Fuerza , Humanos , Fuerza Muscular , Reproducibilidad de los Resultados , Prueba de Esfuerzo , PosturaRESUMEN
Objective: To explore how a stringent campus lockdown affects the physical activity (PA), sleep and mental health of Chinese university students living in student dormitories during the COVID-19 pandemic. Methods: Data on PA, sleep and mental health were collected between 24 March and 4 April 2022 from 2084 university students (mean age = 22.4 years, 61.1% male students) via an online questionnaire distributed by the students' advisers of each dormitory. The Chinese short version of the International Physical Activity Questionnaire (IPAQ-C), Athens Insomnia Scale (CAIS) and General Health Questionnaire 12-item (GHQ-12) were applied. The Mann-Whitney test and Kruskal-Wallis tests were used to evaluate the PA profile differences between genders, before and during the lockdown period and between students' living environments. Chi-squared (χ2) or Fisher's exact test was used to assess changes in health behaviors by gender and students' living environment compared to before the lockdown. A mediation model was used to examine whether sleep disorder mediated the relationship between PA and mental health in different students' living environments. Results: Participants reported a significant decrease in weekly total PA levels (63.9%). Mean daily sedentary time increased by 21.4% and daily lying time increased by 10.7% compared to before lockdown. Among the participants, 21.2% had experienced insomnia, and 39.0% reported having high mental distress. Female students reported 10% higher rates of sleep disorders than male students (p < 0.001), and also experienced a higher incidence of mental disorders (p < 0.001). Students living with three roommates had a larger decrease in frequencies and durations of participation in light PA than other students (p < 0.001). PA was negatively associated with sleep and mental health, and sleep disorder was a mediating factor between PA and mental health in the students living with two and three roommates. Conclusion: This study showed that strict lockdowns within university dormitories during the COVID-19 pandemic had a negative effect on the health of university students by changing their health behaviors, physical activity and sleep. Our findings indicate a need for strategies to promote an active lifestyle for students in space-limited dormitories in order to maintain health during a prolonged lockdown.
RESUMEN
Commercially wrist-worn devices often present inaccurate estimations of energy expenditure (EE), with large between-device differences. We aimed to assess the validity of the Apple Watch Series 6 (AW), Garmin FENIX 6 (GF) and Huawei Watch GT 2e (HW) in estimating EE during outdoor walking and running. Twenty young normal-weight Chinese adults concurrently wore three index devices randomly positioned at both wrists during walking at 6 km/h and running at 10 km/h for 2 km on a 400- meter track. As a criterion, EE was assessed by indirect calorimetry (COSMED K5). For walking, EE from AW and GF was significantly higher than that obtained by the K5 (p < 0.001 and 0.002, respectively), but not for HW (p = 0.491). The mean absolute percentage error (MAPE) was 19.8% for AW, 32.0% for GF, and 9.9% for HW, respectively. The limits of agreement (LoA) were 44.1, 150.1 and 48.6 kcal for AW, GF, and HW respectively. The intraclass correlation coefficient (ICC) was 0.821, 0.216 and 0.760 for AW, GF, and HW, respectively. For running, EE from AW and GF were significantly higher than the K5 (p < 0.001 and 0.001, respectively), but not for HW (p = 0.946). The MAPE was 24.4%, 21.8% and 11.9% for AW, GF and HW, respectively. LoA were 62.8, 89.4 and 65.6 kcal for AW, GF and HW, respectively. The ICC was 0.741, 0.594, and 0.698 for AW, GF and HW, respectively. The results indicate that the tested smartwatches show a moderate validity in EE estimations for outdoor walking and running.
RESUMEN
Objective: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2DM) commonly coexist and act synergistically to drive adverse clinical outcomes. This study is aimed at investigating the effects of exercise intervention and oral hypoglycaemic drug of metformin (MET) alone or combined on hepatic lipid accumulation. To investigate if oxidative stress and endoplasmic reticulum stress (ERS) are involved in lipotoxicity-induced hepatocyte apoptosis in diabetic mice and whether exercise and/or MET alleviated oxidative stress or ERS-apoptosis by AMPK-Nrf2-HO-1 signaling pathway. Methods: Forty db/db mice with diabetes (random blood glucose ≥ 250 mg/dL) were randomly allocated into four groups: control (CON), exercise training alone (EX), metformin treatment alone (MET), and exercise combined with metformin (EM) groups. Hematoxylin-eosin and oil red O staining were carried out to observe hepatic lipid accumulation. Immunohistochemical and TUNEL methods were used to detect the protein expression of the binding immunoglobulin protein (BiP) and superoxide dismutase-1 (SOD1) and the apoptosis level of hepatocytes. ERS-related gene expression and the AMPK-Nrf2-HO-1 signaling pathway were tested by western blotting. Results: Our data showed that db/db mice exhibited increased liver lipid accumulation, which induced oxidative and ER stress of the PERK-eIF2α-ATF4 pathway, and hepatocyte apoptosis. MET combined with exercise training significantly alleviated hepatic lipid accumulation by suppressing BiP expression, the central regulator of ER homeostasis, and its downstream PERK-eIF2α-ATF4 pathway, as well as upregulated the AMPK-Nrf2-HO-1 signaling pathway. Moreover, the combination of exercise and MET displayed protective effects on hepatocyte apoptosis by downregulating Bax expression and TUNEL-positive staining, restoring the balance of cleaved-caspase-3 and caspase-3, and improving the antioxidant defense system to prevent oxidative damage in db/db mice. Conclusion: Compared to MET or exercise intervention alone, the combined exercise and metformin exhibited significant effect on ameliorating hepatic steatosis, inhibiting oxidative and ER stress-induced hepatocyte apoptosis via improving the capacity of the antioxidant defense system and suppression of the PERK-eIF2α-ATF4 pathway. Furthermore, upregulation of AMPK-Nrf2-HO-1 signaling pathway might be a key crosstalk between MET and exercise, which may have additive effects on alleviating hepatic lipid accumulation.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antioxidantes/farmacología , Apoptosis , Glucemia , Caspasa 3/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estrés del Retículo Endoplásmico , Eosina Amarillenta-(YS)/farmacología , Hematoxilina/farmacología , Hepatocitos/metabolismo , Hipoglucemiantes/farmacología , Lípidos , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Transducción de Señal , Superóxido Dismutasa-1/metabolismo , Proteína X Asociada a bcl-2/metabolismoRESUMEN
Introduction: There is limited understanding of how older adults can reach kinematic goals in rehabilitation while performing exergames and conventional exercises, and how similar or different the kinematics during exergaming are when compared with conventional therapeutic exercise with similar movement. The aim of this study was to describe the movement characteristics performed during exercise in custom-designed exergames and conventional therapeutic exercises among patients who have undergone unilateral total knee replacement (TKR). In addition, the secondary aim was to assess the relation of these exercise methods, and to assess participants' perceived exertion and knee pain during exergaming and exercising. Materials and methods: Patients up to 4 months after the TKR surgery were invited in a single-visit exercise laboratory session. A 2D motion analysis and force plates were employed to evaluate movement characteristics as the volume, range, and intensity of movement performed during custom-designed knee extension-flexion and weight shifting exergames and conventional therapeutic exercises post TKR. The perceived exertion and knee pain were assessed using the Borg Rating of Perceived Exertion and Visual Analog Scale, respectively. Results: Evaluation of seven patients with TKR [age median (IQR), 65 (10) years] revealed that the volume and intensity of movement were mostly higher during exergames. Individual goniometer-measured knee range of motion were achieved either with exergames and conventional therapeutic exercises, especially in knee extension exercises. The perceived exertion and knee pain were similar after exergames and conventional therapeutic exercises. Conclusions: During custom-designed exergaming the patients with TKR achieve the movement characteristics appropriate for post-TKR rehabilitation without increasing the stress and pain experienced even though the movement characteristics might be partly different from conventional therapeutic exercises by the volume and intensity of movement. Physical therapists could consider implementing such exergames in rehabilitation practice for patients with TKR once effectiveness have been approved and they are widely available.
RESUMEN
This study investigated the factors that are associated with sleep disturbances among Chinese athletes. Sleep quality and associated factors were assessed by the Athlete Sleep Screening Questionnaire (ASSQ, n â= â394, aged 18-32 years, 47.6% female). Sleep difficulty score (SDS) and level of sleep problem (none, mild, moderate, or severe) were used to classify participants' sleep quality. Categorical variables were analyzed by Chi-square or fisher's exact tests. An ordinal logistic regression analysis was used to explore factors with poor sleep (SDS ≥8). Approximately 14.2% of participants had moderate to severe sleep problem (SDS ≥8). Fifty-nine percent of the athletes reported sleep disturbance during travel, while 43.3% experienced daytime dysfunction when travelling for competition. No significant difference was found in the SDS category between gender, sports level and events. Athletes with evening chronotype were more likely to report worse sleep than athletes with morning and intermediate chronotype (OR, 2.25; 95%CI, 1.44-3.52; p â< â0.001). For each additional year of age, there was an increase of odds ratio for poor sleep quality (OR, 1.15; 95%CI, 1.04-1.26; p â= â0.004), while each additional year of training reduced the odds ratio (OR, 0.95; 95%CI, 0.91-0.99; p â= â0.044). To improve sleep health in athletes, chronotype, travel-related issues, age and years of training should be taken into consideration.
RESUMEN
Exercise and diet are treatments for nonalcoholic fatty liver disease (NAFLD) and prediabetes, however, how exercise and diet interventions impact gut microbiota in patients is incompletely understood. We previously reported a 8.6-month, four-arm (Aerobic exercise, n = 29; Diet, n = 28; Aerobic exercise + Diet, n = 29; No intervention, n = 29) randomized, singe blinded (for researchers), and controlled intervention in patients with NAFLD and prediabetes to assess the effect of interventions on the primary outcomes of liver fat content and glucose metabolism. Here we report the third primary outcome of the trial-gut microbiota composition-in participants who completed the trial (22 in Aerobic exercise, 22 in Diet, 23 in Aerobic exercise + Diet, 18 in No Intervention). We show that combined aerobic exercise and diet intervention are associated with diversified and stabilized keystone taxa, while exercise and diet interventions alone increase network connectivity and robustness between taxa. No adverse effects were observed with the interventions. In addition, in exploratory ad-hoc analyses we find that not all subjects responded to the intervention in a similar manner, when using differentially altered gut microbe amplicon sequence variants abundance to classify the responders and low/non-responders. A personalized gut microbial network at baseline could predict the individual responses in liver fat to exercise intervention. Our findings suggest an avenue for developing personalized intervention strategies for treatment of NAFLD based on host-gut microbiome ecosystem interactions, however, future studies with large sample size are needed to validate these discoveries. The Trial Registration Number is ISRCTN 42622771.
Asunto(s)
Microbiota , Enfermedad del Hígado Graso no Alcohólico , Estado Prediabético , Dieta , Ejercicio Físico/fisiología , Humanos , Hígado , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/terapia , Estado Prediabético/complicacionesRESUMEN
BACKGROUND: Consumer wearables and smartphone devices commonly offer an estimate of energy expenditure (EE) to assist in the objective monitoring of physical activity to the general population. Alongside consumers, healthcare professionals and researchers are seeking to utilise these devices for the monitoring of training and improving human health. However, the methods of validation and reporting of EE estimation in these devices lacks rigour, negatively impacting on the ability to make comparisons between devices and provide transparent accuracy. OBJECTIVES: The Towards Intelligent Health and Well-Being Network of Physical Activity Assessment (INTERLIVE) is a joint European initiative of six universities and one industrial partner. The network was founded in 2019 and strives towards developing best-practice recommendations for evaluating the validity of consumer wearables and smartphones. This expert statement presents a best-practice validation protocol for consumer wearables and smartphones in the estimation of EE. METHODS: The recommendations were developed through (1) a systematic literature review; (2) an unstructured review of the wider literature discussing the potential factors that may introduce bias during validation studies; and (3) evidence-informed expert opinions from members of the INTERLIVE network. RESULTS: The systematic literature review process identified 1645 potential articles, of which 62 were deemed eligible for the final dataset. Based on these studies and the wider literature search, a validation framework is proposed encompassing six key domains for validation: the target population, criterion measure, index measure, testing conditions, data processing and the statistical analysis. CONCLUSIONS: The INTERLIVE network recommends that the proposed protocol, and checklists provided, are used to standardise the testing and reporting of the validation of any consumer wearable or smartphone device to estimate EE. This in turn will maximise the potential utility of these technologies for clinicians, researchers, consumers, and manufacturers/developers, while ensuring transparency, comparability, and replicability in validation. TRIAL REGISTRATION: PROSPERO ID: CRD42021223508.
Asunto(s)
Teléfono Inteligente , Dispositivos Electrónicos Vestibles , Lista de Verificación , Metabolismo Energético , Ejercicio Físico , HumanosRESUMEN
(1) Background: Evidence suggests that aerobic exercise and high-intensity interval training (HIIT) might increase fat oxidation and reduce fat. However, limited research has examined the effects of combining progressive aerobic exercise and HIIT interventions in sedentary adults with overweight and obesity, and differences in its effects between men and women remain unclear. The purpose of this study was to investigate the effects of combined progressive aerobic exercise and HIIT (CAEH) on fat oxidation and fat reduction in sedentary Chinese adults and compare sex differences in sedentary adults after seven weeks. (2) Methods: Eighty-four sedentary obese adults were enrolled and allocated to two groups in baseline (experimental (EXP) group:42; control (CON) group:42), and fifty-six subjects (EXP:31; CON:25) completed the experiments and were included in the final analysis. Subjects in the EXP group performed CAEH three times per week for seven weeks. Subjects in the CON group were advised to continue with their normal daily activities. Anthropometric, lipid profile, cardiorespiratory fitness, and fat oxidation outcomes were assessed before and after the intervention. (3) Results: After seven weeks of the CAEH intervention, compared with the CON group, the EXP group showed significant increases in fat oxidation at rest (FO_rest) (+0.03 g/min, p < 0.01), maximal fat oxidation (MFO) (+0.05 g/min, p < 0.01), and maximal oxygen intake (VO2max) (+3.2 mL/kg/min, p < 0.01). The changes in the percentages of the FO_rest (+57%) and the VO2max (+16%) were significantly greater (+20%, +6%) in males than in females (p < 0.05, p < 0.05). The body mass index (BMI) (-1.2 kg/m2, p < 0.01), body fat percentage (-3.2%, p < 0.001), visceral fat area (-12.8 cm2, p < 0.001), and total cholesterol (TC) levels (-0.4 mmol/L, p < 0.05) were significantly decreased in the EXP group. (4) Conclusions: Seven weeks of the CAEH intervention effectively improved FO_rest, MFO, and VO2max in sedentary obese adults, and the improvements in FO_rest and VO2max were more pronounced in males than in females. CAEH also improved body composition and TC levels in sedentary obese adults.
RESUMEN
BACKGROUND: Technological advances have recently made possible the estimation of maximal oxygen consumption (VO2max) by consumer wearables. However, the validity of such estimations has not been systematically summarized using meta-analytic methods and there are no standards guiding the validation protocols. OBJECTIVE: The aim was to (1) quantitatively summarize previous studies investigating the validity of the VO2max estimated by consumer wearables and (2) provide best-practice recommendations for future validation studies. METHODS: First, we conducted a systematic review and meta-analysis of studies validating the estimation of VO2max by wearables. Second, based on the state of knowledge (derived from the systematic review) combined with the expert discussion between the members of the Towards Intelligent Health and Well-Being Network of Physical Activity Assessment (INTERLIVE) consortium, we provided a set of best-practice recommendations for validation protocols. RESULTS: Fourteen validation studies were included in the systematic review and meta-analysis. Meta-analysis results revealed that wearables using resting condition information in their algorithms significantly overestimated VO2max (bias 2.17 ml·kg-1·min-1; limits of agreement - 13.07 to 17.41 ml·kg-1·min-1), while devices using exercise-based information in their algorithms showed a lower systematic and random error (bias - 0.09 ml·kg-1·min-1; limits of agreement - 9.92 to 9.74 ml·kg-1·min-1). The INTERLIVE consortium proposed six key domains to be considered for validating wearable devices estimating VO2max, concerning the following: the target population, reference standard, index measure, testing conditions, data processing, and statistical analysis. CONCLUSIONS: Our meta-analysis suggests that the estimations of VO2max by wearables that use exercise-based algorithms provide higher accuracy than those based on resting conditions. The exercise-based estimation seems to be optimal for measuring VO2max at the population level, yet the estimation error at the individual level is large, and, therefore, for sport/clinical purposes these methods still need improvement. The INTERLIVE network hereby provides best-practice recommendations to be used in future protocols to move towards a more accurate, transparent and comparable validation of VO2max derived from wearables. PROSPERO ID: CRD42021246192.
Asunto(s)
Deportes , Dispositivos Electrónicos Vestibles , Ejercicio Físico , Prueba de Esfuerzo/métodos , Humanos , Consumo de OxígenoRESUMEN
This study assessed the associations of maximal isometric strength and movement economy in 126 recreationally active men and women. Oxygen consumption was assessed through a graded treadmill test with 4-minute increments (4-12 kmâh-1). Maximal isometric leg extensor, leg flexor and handgrip strength were assessed by isometric dynamometry. Models of best fit for gross oxygen cost and gross caloric unit cost were observed across the majority of velocities when the leg extensor/flexor strength ratio and handgrip strength were combined (R2 = 0.207-0.525 and R2 = 0.152-0.475, respectively). Additionally, the oxygen cost differed statistically for the majority of velocities when participants were split by the median of leg extensor strength (12.3-26.3 mlâkg-1âkm-1, p < 0.05) and the average of all strength variables (13.9-30.3 mlâkg-1âkm-1, p < 0.05). Our data underline the importance of maintaining maximal strength in order to perform activities with low to moderate oxygen demands.
Asunto(s)
Oxígeno , Carrera , Femenino , Fuerza de la Mano , Humanos , Masculino , Fuerza Muscular , Músculo Esquelético , Consumo de Oxígeno , CaminataRESUMEN
BACKGROUND: Cardiovascular diseases may originate in childhood. Biomarkers identifying individuals with increased risk for disease are needed to support early detection and to optimise prevention strategies. METHODS: In this prospective study, by applying a machine learning to high throughput NMR-based metabolomics data, we identified circulating childhood metabolic predictors of adult cardiovascular disease risk (MetS score) in a cohort of 396 females, followed from childhood (mean age 11·2 years) to early adulthood (mean age 18·1 years). The results obtained from the discovery cohort were validated in a large longitudinal birth cohort of females and males followed from puberty to adulthood (n = 2664) and in four cross-sectional data sets (n = 6341). FINDINGS: The identified childhood metabolic signature included three circulating biomarkers, glycoprotein acetyls (GlycA), large high-density lipoprotein phospholipids (L-HDL-PL), and the ratio of apolipoprotein B to apolipoprotein A-1 (ApoB/ApoA) that were associated with increased cardio-metabolic risk in early adulthood (AUC = 0·641â0·802, all p<0·01). These associations were confirmed in all validation cohorts with similar effect estimates both in females (AUC = 0·667â0·905, all p<0·01) and males (AUC = 0·734â0·889, all p<0·01) as well as in elderly patients with and without type 2 diabetes (AUC = 0·517â0·700, all p<0·01). We subsequently applied random intercept cross-lagged panel model analysis, which suggested bidirectional causal relationship between metabolic biomarkers and cardio-metabolic risk score from childhood to early adulthood. INTERPRETATION: These results provide evidence for the utility of a circulating metabolomics panel to identify children and adolescents at risk for future cardiovascular disease, to whom preventive measures and follow-up could be indicated. FUNDING: This study was financially supported by the Academy of Finland, Ministry of Education of Finland and University of Jyvaskyla, the National Nature Science Foundation of China (Grant 31571219), the 111 Project (B17029), the Shanghai Jiao Tong University Zhiyuan Foundation (Grant CP2014013), China Postdoc Scholarship Council (201806230001), the Food and Health Bureau of Hong Kong SAR's Health and Medical Research Fund (HMRF grants 15162161 and 07181036) and the CUHK Direct Grants for Research (2016¢033 and 2018¢034), and a postdoctoral fellowship from K. Carole Ellison (to T.W.). The UK Medical Research Council and Wellcome (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. NFBC1966 received financial support from University of Oulu Grant no. 24000692, Oulu University Hospital Grant no. 24301140, ERDF European Regional Development Fund Grant no. 539/2010 A31592. This work was supported by European Union's Horizon 2020 research and innovation programme LongITools 874739.