Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Funct Plant Biol ; 512024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39298655

RESUMEN

Breeding abiotic stress-tolerant varieties of Rosa chinensis is a paramount goal in horticulture. WRKY transcription factors, pivotal in plant responses to diverse stressors, offer potential targets for enhancing stress resilience in R. chinensis . Using bioinformatics and genomic data, we identified RcWRKY transcription factor genes, characterised their chromosomal distribution, phylogenetic relationships, structural attributes, collinearity, and expression patterns in response to saline stress. Leveraging bidirectional database searches, we pinpointed 66 RcWRKY genes, categorised into three groups. All except RcWRKY60 encoded DNA Binding Domain and Zinc Finger Motif regions of the WRKY domain. Expansion of the RcWRKY gene family was propelled by 19 segmental, and 2 tandem, duplications. We unveiled 41 and 15 RcWRKY genes corresponding to 50 AtWRKY and 17 OsWRKY orthologs respectively, indicating postdivergence expansion. Expression analyses under alkaline stress pinpointed significant alterations in 54 RcWRKY genes. Integration of functional roles from their Arabidopsis orthologs and cis -acting elements within their promoters, along with quantitative reverse transcription PCR validation, underscored the importance of RcWRKY27 and 29 in R. chinensis ' alkaline stress response. These findings offer insights into the biological roles of RcWRKY transcription factors, as well as the regulatory dynamics governing R. chinensis ' growth, development, and stress resilience.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Rosa , Estrés Fisiológico , Factores de Transcripción , Rosa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Álcalis/farmacología
2.
Acta Biomater ; 184: 210-225, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969078

RESUMEN

Osteocytes perceive and process mechanical stimuli in the lacuno-canalicular network in bone. As a result, they secrete signaling molecules that mediate bone formation and resorption. To date, few three-dimensional (3D) models exist to study the response of mature osteocytes to biophysical stimuli that mimic fluid shear stress and substrate strain in a mineralized, biomimetic bone-like environment. Here we established a biomimetic 3D bone model by utilizing a state-of-art perfusion bioreactor platform where immortomouse/Dmp1-GFP-derived osteoblastic IDG-SW3 cells were differentiated into mature osteocytes. We evaluated proliferation and differentiation properties of the cells on 3D microporous scaffolds of decellularized bone (dBone), poly(L-lactide-co-trimethylene carbonate) lactide (LTMC), and beta-tricalcium phosphate (ß-TCP) under physiological fluid flow conditions over 21 days. Osteocyte viability and proliferation were similar on the scaffolds with equal distribution of IDG-SW3 cells on dBone and LTMC scaffolds. After seven days, the differentiation marker alkaline phosphatase (Alpl), dentin matrix acidic phosphoprotein 1 (Dmp1), and sclerostin (Sost) were significantly upregulated in IDG-SW3 cells (p = 0.05) on LTMC scaffolds under fluid flow conditions at 1.7 ml/min, indicating rapid and efficient maturation into osteocytes. Osteocytes responded by inducing the mechanoresponsive genes FBJ osteosarcoma oncogene (Fos) and prostaglandin-endoperoxide synthase 2 (Ptgs2) under perfusion and dynamic compressive loading at 1 Hz with 5 % strain. Together, we successfully created a 3D biomimetic platform as a robust tool to evaluate osteocyte differentiation and mechanobiology in vitro while recapitulating in vivo mechanical cues such as fluid flow within the lacuno-canalicular network. STATEMENT OF SIGNIFICANCE: This study highlights the importance of creating a three-dimensional (3D) in vitro model to study osteocyte differentiation and mechanobiology, as cellular functions are limited in two-dimensional (2D) models lacking in vivo tissue organization. By using a perfusion bioreactor platform, physiological conditions of fluid flow and compressive loading were mimicked to which osteocytes are exposed in vivo. Microporous poly(L-lactide-co-trimethylene carbonate) lactide (LTMC) scaffolds in 3D are identified as a valuable tool to create a favorable environment for osteocyte differentiation and to enable mechanical stimulation of osteocytes by perfusion and compressive loading. The LTMC platform imitates the mechanical bone environment of osteocytes, allowing the analysis of the interaction with other cell types in bone under in vivo biophysical stimuli.


Asunto(s)
Reactores Biológicos , Diferenciación Celular , Osteocitos , Osteocitos/citología , Osteocitos/metabolismo , Animales , Andamios del Tejido/química , Ratones , Perfusión , Estrés Mecánico , Línea Celular , Proliferación Celular , Fuerza Compresiva , Modelos Biológicos
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124304, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38636424

RESUMEN

A ratiometric sensor with ultralow background is highly desired due to its low environmental influence and high sensitivity. Herein, inspired by the solubility difference of carboxylate in aqueous and organic solvents, we prepared a core-shell structure porous zirconia-covalent organic framework (COF) composite through thermal hydrolysis of UiO-66-COF precursors in organic alkali solution. The ligand 2-aminoterephthalic acids (H2BDC-NH2) of UiO-66 were transformed into 2-aminoterephthalate salts (ATA salts) that existed in zirconium-oxo clusters building units. The composites emitted only yellow emission (597 nm) from the COF in organic solvent due to the insolubility of ATA salts that induce aggregation-caused quenching (ACQ) and the protection of the COF shell. Contrarily, when water was added into mixture, the ATA salts were released into solution and its fluorescence recovered at 446 nm, while the fluorescence of COF was quenched due to the blockage of the intramolecular charge transfer (ICT) process by water. Thus, a high-sensitivity ratiometric fluorescence method is obtained with ultralow background signal and fast response (less than 1 min) for sensing water in organic solvent. We believe that the proposed ratiometric fluorescence sensor based on the zirconia-COF composite will provide the guidance for detection with wide applications.

4.
Microbiol Spectr ; 12(3): e0384623, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38299831

RESUMEN

Acidovorax citrulli is the main pathogen causing bacterial fruit blotch, which seriously threatens the global watermelon industry. At present, rapid, sensitive, and low-cost detection methods are urgently needed. The established CRISPR/LbCas12a visual detection method can specifically detect A. citrulli and does not cross-react with other pathogenic bacteria such as Erwinia tracheiphila, Pseudomonas syringae, and Xanthomonas campestris. The sensitivity of this method for genomic DNA detection is as low as 0.7 copies/µL, which is higher than conventional PCR and real-time PCR. In addition, this method only takes 2.5 h from DNA extraction to quantitative detection and does not require complex operation and sample treatment. Additionally, the technique was applied to test real watermelon seed samples for A. citrulli, and the results were contrasted with those of real-time fluorescence quantitative PCR and conventional PCR. The high sensitivity and specificity have broad application prospects in the rapid detection of bacterial fruit blotch bacterial pathogens of watermelon.IMPORTANCEBacterial fruit blotch, Acidovorax citrulli, is an important seed-borne bacterial disease of watermelon, melon, and other cucurbits. The lack of rapid, sensitive, and reliable pathogen detection methods has hampered research on fruit spot disease prevention and control. Here, we demonstrate the CRISPR/Cas12a system to analyze aspects of the specificity and sensitivity of A. citrulli and to test actual watermelon seed samples. The results showed that the CRISPR/Cas12a-based free-amplification method for detecting bacterial fruit blotch pathogens of watermelons was specific for A. citrulli target genes and 100-fold more sensitive than conventional PCR with quantitative real-time PCR. This method provides a new technical tool for the detection of A. citrulli.


Asunto(s)
Citrullus , Comamonadaceae , Citrullus/genética , Citrullus/microbiología , Frutas/microbiología , Enfermedades de las Plantas/microbiología , Comamonadaceae/genética , ADN
5.
Small ; 20(12): e2307467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940620

RESUMEN

The electrochemical reduction of carbon dioxide (CO2) to ethylene creates a carbon-neutral approach to converting carbon dioxide into intermittent renewable electricity. Exploring efficient electrocatalysts with potentially high ethylene selectivity is extremely desirable, but still challenging. In this report, a laboratory-designed catalyst HKUST-1@Cu2O/PTFE-1 is prepared, in which the high specific surface area of the composites with improved CO2 adsorption and the abundance of active sites contribute to the increased electrocatalytic activity. Furthermore, the hydrophobic interface constructed by the hydrophobic material polytetrafluoroethylene (PTFE) effectively inhibits the occurrence of hydrogen evolution reactions, providing a significant improvement in the efficiency of CO2 electroreduction. The distinctive structures result in the remarkable hydrocarbon fuels generation with high Faraday efficiency (FE) of 67.41%, particularly for ethylene with FE of 46.08% (-1.0 V vs RHE). The superior performance of the catalyst is verified by DFT calculation with lower Gibbs free energy of the intermediate interactions with improved proton migration and selectivity to emerge the polycarbon(C2+) product. In this work, a promising and effective strategy is presented to configure MOF-based materials with tailored hydrophobic interface, high adsorption selectivity and more exposed active sites for enhancing the efficiency of the electroreduction of CO2 to C2+ products with high added value.

6.
Heliyon ; 9(12): e22434, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076144

RESUMEN

Background: Cell death is a key regulatory process in organisms and its study has become increasingly important in the field of cancer. While prior research has primarily centered on the individual pathways of cell death in cancer, there has been a lack of comprehensive investigation into the synergistic effects of multiple cell death pathways. Methods: Genes related to autophagy, apoptosis, necroptosis, pyroptosis, and cuproptosis was selected, and patients' data was collected from The Cancer Genome Atlas (TCGA)project. Cell death features were identified using principal component analysis and combined to create a composite score. A scalable prediction model was then created using LASSO regression after a thorough assessment of the composite scores. The model was subsequently validated across multiple external datasets to establish its robustness and reliability. Results: The cell death features effectively represented the gene expression patterns in the samples. The composite score well predicted prognosis, clinical stage, mutation, tumor microenvironment, and immunotherapy effectiveness. The model built on composite scores accurately predicted prognosis and immunotherapy effectiveness across multiple datasets. GJB2 was identified as a potential biomarker. Conclusion: Models based on multiple cell death pathways have significant predictive power for prognosis and immunotherapy effectiveness in lung adenocarcinoma. This highlights the synergistic role of multiple cell death pathways in cancer development and offers a new perspective for cancer research.

7.
Plants (Basel) ; 12(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38140486

RESUMEN

Callose is an important polysaccharide composed of beta-1,3-glucans and is widely implicated in plant development and defense responses. Callose synthesis is mainly catalyzed by a family of callose synthases, also known as glucan synthase-like (GSL) enzymes. Despite the fact that GSL family genes were studied in a few plant species, their functional roles have not been fully understood in woody perennials. In this study, we identified total of 84 GSL genes in seven plant species and classified them into six phylogenetic clades. An evolutionary analysis revealed different modes of duplication driving the expansion of GSL family genes in monocot and dicot species, with strong purifying selection constraining the protein evolution. We further examined the gene structure, protein sequences, and physiochemical properties of 11 GSL enzymes in Prunus mume and observed strong sequence conservation within the functional domain of PmGSL proteins. However, the exon-intron distribution and protein motif composition are less conservative among PmGSL genes. With a promoter analysis, we detected abundant hormonal responsive cis-acting elements and we inferred the putative transcription factors regulating PmGSLs. To further understand the function of GSL family genes, we analyzed their expression patterns across different tissues, and during the process of floral bud development, pathogen infection, and hormonal responses in Prunus species and identified multiple GSL gene members possibly implicated in the callose deposition associated with bud dormancy cycling, pathogen infection, and hormone signaling. In summary, our study provides a comprehensive understanding of GSL family genes in Prunus species and has laid the foundation for future functional research of callose synthase genes in perennial trees.

9.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762261

RESUMEN

The CCD gene family plays a crucial role in the cleavage of carotenoids, converting them into apocarotenoids. This process not only impacts the physiology and development of plants but also enhances their tolerance toward different stresses. However, the character of the PmCCD gene family and its role in ornamental woody Prunus mume remain unclear. Here, ten non-redundant PmCCD genes were identified from the P. mume genome, and their physicochemical characteristics were predicted. According to the phylogenetic tree, PmCCD proteins were classified into six subfamilies: CCD1, CCD4, CCD7, CCD8, NCED and CCD-like. The same subfamily possessed similar gene structural patterns and numbers of conserved motifs. Ten PmCCD genes were concentrated on three chromosomes. PmCCD genes exhibited interspecific collinearity with P. armeniaca and P. persica. Additionally, PmCCD genes had obvious specificity in different tissues and varieties. Compared with white-flowered 'ZLE', PmCCD1 and PmCCD4 genes were low-expressed in 'HJH' with yellow petals, which suggested PmCCD1 and PmCCD4 might be related to the formation of yellow flowers in P. mume. Nine PmCCD genes could respond to NaCl or PEG treatments. These genes might play a crucial role in salt and drought resistance in P. mume. Moreover, PmVAR3 and PmSAT3/5 interacted with PmCCD4 protein in yeast and tobacco leaf cells. This study laid a foundation for exploring the role of the PmCCD gene family in flower coloration and stress response in P. mume.


Asunto(s)
Prunus , Filogenia , Prunus/metabolismo , Genes de Plantas , Flores , Regulación de la Expresión Génica de las Plantas
11.
Nano Lett ; 23(13): 6124-6131, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37347949

RESUMEN

Excitons in two-dimensional transition metal dichalcogenides have a valley degree of freedom that can be optically manipulated for quantum information processing. Here, we integrate MoS2 monolayers with achiral silicon disk array metasurfaces to enhance and control valley-specific absorption and emission. Through the coupling to the metasurface electric and magnetic Mie modes, the intensity and lifetime of the emission of neutral excitons, trions, and defect bound excitons can be enhanced and shortened, respectively, while the spectral shape can be modified. Additionally, the degree of polarization (DOP) of exciton and trion emission from the valley can be symmetrically enhanced at 100 K. The DOP increase is attributed to both the metasurface-enhanced chiral absorption of light and the metasurface-enhanced exciton emission from the Purcell effect. Combining Si-compatible photonic design with large-scale 2D materials integration, our work makes an important step toward on-chip valleytronic applications approaching room-temperature operation.

12.
Front Genet ; 14: 1208488, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229203

RESUMEN

[This corrects the article DOI: 10.3389/fgene.2022.1013822.].

13.
Ecotoxicol Environ Saf ; 252: 114619, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753967

RESUMEN

The development of agriculture and industry has led to a gradual increase in the levels of cadmium (Cd) in the soil, which, due to its high mobility in soil, makes Cd deposition in plants a serious threat to the health of animals and humans. The important role of melatonin (MT) in regulating plant growth and adaptation to environmental stress has become a pertinent research topic, but the mechanisms of action of MT in Cd-stressed Platycladus orientalis seedlings are unclear. Here, we investigated the mitigation mechanism of exogenous MT application on P. orientalis seedlings under Cd stress. Cd stress significantly inhibited the growth of P. orientalis seedlings by disrupting photosynthetic pigments, mineral balance, osmotic balance, and oxidative balance. In contrast, the application of exogenous MT significantly increased the growth parameters of P. orientalis seedlings, reduced Cd accumulation and transfer in the seedlings, increased the content of iron, manganese, zinc, copper, chlorophyll, soluble protein, soluble sugar, and proline, reduced the content of glutathione, increased the activities of superoxide dismutase and peroxidase, and significantly enhanced the expression of antioxidant-related genes (POD, GST, and APX). It also effectively reduced the content of hydrogen peroxide and malondialdehyde to inhibit the production of reactive oxygen species, thus alleviating Cd-induced oxidative stress. In addition, MT significantly upregulated the expression of the ethanol dehydrogenase (ADH) gene, which is effective in removing the acetaldehyde produced by anaerobic respiration in seedlings under stress, thereby reducing the toxic effects on P. orientalis. The results showed that exogenous MT enhanced the tolerance of P. orientalis seedlings to Cd stress by regulating photosynthesis, mineral balance, osmotic balance, and the antioxidant system and that the optimal concentration of MT was 200 µmol·L-1.


Asunto(s)
Antioxidantes , Melatonina , Humanos , Antioxidantes/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Cadmio/metabolismo , Plantones , Estrés Oxidativo , Minerales/metabolismo , Nutrientes , Suelo , Peróxido de Hidrógeno/metabolismo
15.
Heliyon ; 8(12): e12497, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36568034

RESUMEN

Herbal medicines have greatly contributed to human health worldwide for thousands of years. In particular, traditional Chinese medicine plays an essential role in the prevention and treatment of COVID-19. With the exponentially increasing use and global attention to herbal medicinal products (HMPs), efficacy and safety have become major public concerns in many countries. In general, the quantification and qualification of quality markers (Q-markers) is the most common way to solve this issue. In the last few decades, small molecules, including flavonoids, terpenes, phenylpropanoids, alkaloids, phenols, and glycosides have been extensively investigated as Q-markers for HMP quality control. With the development of biotechnology in the last decade, scientists have begun to explore HMPs macromolecules, including polysaccharides and DNA, for their establishment as Q-markers. In recent years, supermolecules with stronger biological activities have been found in HMPs. In this review, we summarize and discuss the current Q-markers for HMP quality control; in particular, the possibility of using supermolecules as Q-markers based on structure and activity was discussed.

16.
J Oncol ; 2022: 4537021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276280

RESUMEN

According to statistics released by the WHO, China has the highest prevalence of myopia in the world, with a frequency that is 1.5 times higher than the global average. Asians have the highest prevalence of myopia worldwide. The Ministry of Education and the State General Administration of Sports "2010 National Student Physical Fitness and Health Research Results" show that the incidence of poor vision among primary and secondary school students in China is 67.3%, and elementary school students' vision has decreased by 40.9%. Low vision among youth has become a major cause of affecting the quality of the population and improving national physical fitness; therefore, how to improve and enhance the vision level of youth has become a major issue for the government, sports, and educators face as a major issue. In order to address this issue, this research suggests a deep learning-based vision monitoring and risk prediction model for high myopia eyes and develops a deep artificial neural network that unsupervised learns essential characteristics of physiological time-series data.

17.
Front Genet ; 13: 1013822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313426

RESUMEN

AUXIN/INDOLE ACETIC ACIDs (Aux/IAAs), an early auxin-responsive gene family, is important for plant growth and development. To fully comprehend the character of Aux/IAA genes in woody plants, we identified 19 PmIAA genes in Prunus mume and dissected their protein domains, phylogenetic relationship, gene structure, promoter, and expression patterns during floral bud flushing, auxin response, and abiotic stress response. The study showed that PmIAA proteins shared conserved Aux/IAA domain, but differed in protein motif composition. 19 PmIAA genes were divided into six groups (Groups Ⅰ to Ⅵ) based on phylogenetic analysis. The gene duplication analysis showed that segmental and dispersed duplication greatly influenced the expansion of PmIAA genes. Moreover, we identified and classified the cis-elements of PmIAA gene promoters and detected elements that are related to phytohormone responses and abiotic stress responses. With expression pattern analysis, we observed the auxin-responsive expression of PmIAA5, PmIAA17, and PmIAA18 in flower bud, stem, and leaf tissues. PmIAA5, PmIAA13, PmIAA14, and PmIAA18 were possibly involved in abiotic stress responses in P. mume. In general, these results laid the theoretical foundation for elaborating the functions of Aux/IAA genes in perennial woody plant development.

18.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142832

RESUMEN

The Gibberellic Acid Stimulated Arabidopsis/Gibberellin Stimulated Transcript (GASA/GAST) gene family is a group of plant-specific genes encoding cysteine-rich peptides essential to plant growth, development, and stress responses. Although GASA family genes have been identified in various plant species, their functional roles in Prunus mume are still unknown. In this study, a total of 16 PmGASA genes were identified via a genome-wide scan in Prunus mume and were grouped into three major gene clades based on the phylogenetic tree. All PmGASA proteins possessed the conserved GASA domain, consisting of 12-cysteine residues, but varied slightly in protein physiochemical properties and motif composition. With evolutionary analysis, we observed that duplications and purifying selection are major forces driving PmGASA family gene evolution. By analyzing PmGASA promoters, we detected a number of hormonal-response related cis-elements and constructed a putative transcriptional regulatory network for PmGASAs. To further understand the functional role of PmGASA genes, we analyzed the expression patterns of PmGASAs across different organs and during various biological processes. The expression analysis revealed the functional implication of PmGASA gene members in gibberellic acid-, abscisic acid-, and auxin-signaling, and during the progression of floral bud break in P. mume. To summarize, these findings provide a comprehensive understanding of GASA family genes in P. mume and offer a theoretical basis for future research on the functional characterization of GASA genes in other woody perennials.


Asunto(s)
Arabidopsis , Prunus , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Prunus/metabolismo
19.
Front Plant Sci ; 13: 931454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937373

RESUMEN

MicroRNAs is one class of small non-coding RNAs that play important roles in plant growth and development. Though miRNAs and their target genes have been widely studied in many plant species, their functional roles in floral bud break and dormancy release in woody perennials is still unclear. In this study, we applied transcriptome and small RNA sequencing together to systematically explore the transcriptional and post-transcriptional regulation of floral bud break in P. mume. Through expression profiling, we identified a few candidate genes and miRNAs during different developmental stage transitions. In total, we characterized 1,553 DEGs associated with endodormancy release and 2,084 DEGs associated with bud flush. Additionally, we identified 48 known miRNAs and 53 novel miRNAs targeting genes enriched in biological processes such as floral organ morphogenesis and hormone signaling transudation. We further validated the regulatory relationship between differentially expressed miRNAs and their target genes combining computational prediction, degradome sequencing, and expression pattern analysis. Finally, we integrated weighted gene co-expression analysis and constructed miRNA-mRNA regulatory networks mediating floral bud flushing competency. In general, our study revealed the miRNA-mediated networks in modulating floral bud break in P. mume. The findings will contribute to the comprehensive understanding of miRNA-mediated regulatory mechanism governing floral bud break and dormancy cycling in wood perennials.

20.
Nat Chem Biol ; 18(1): 47-55, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34782743

RESUMEN

Inducer-triggered therapeutic protein expression from designer cells is a promising strategy for disease treatment. However, as most inducer systems harness transcriptional machineries, protein expression timeframes are unsuitable for many therapeutic applications. Here, we engineered a genetic code expansion-based therapeutic system, termed noncanonical amino acids (ncAAs)-triggered therapeutic switch (NATS), to achieve fast therapeutic protein expression in response to cognate ncAAs at the translational level. The NATS system showed response within 2 hours of triggering, whereas no signal was detected in a transcription-machinery-based system. Moreover, NATS system is compatible with transcriptional switches for multi-regulatory-layer control. Diabetic mice with microencapsulated cell implants harboring the NATS system could alleviate hyperglycemia within 90 min on oral delivery of ncAA. We also prepared ncAA-containing 'cookies' and achieved long-term glycemic control in diabetic mice implanted with NATS cells. Our proof-of-concept study demonstrates the use of NATS system for the design of next-generation cell-based therapies to achieve fast orally induced protein expression.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Diabetes Mellitus Experimental/terapia , Código Genético , Animales , Glucemia/metabolismo , Ratones , Prueba de Estudio Conceptual , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...