Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760544

RESUMEN

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

2.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37960523

RESUMEN

Aiming at the problem of the low cooperative positioning accuracy and robustness of multi-UAV formation, a cooperative positioning method of a multi-UAV based on an adaptive fault-tolerant federated filter is proposed. Combined with the position of the follower UAV and leader UAV, and the relative range between them, a cooperative positioning model of the follower UAV is established. On this basis, an adaptive fault-tolerant federated filter is designed. Fault detection and isolation technology are added to improve the positioning accuracy of the follower UAV and the fault tolerance performance of the filter. Meanwhile, the measurement noise matrix is adjusted by the adaptive information allocation coefficient to reduce the impact of undetected fault information on the sub-filter and global estimation accuracy. The simulation results show that the adaptive fault-tolerant federated algorithm can greatly improve the positioning accuracy, which is 83.4% higher than that of the absolute positioning accuracy of a single UAV. In the case of a gradual fault, the method has a stronger fault-tolerant performance and reconstruction performance.

3.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080812

RESUMEN

The 3D electrode silicon detector eliminates the limit of chip thickness, so it can reduce the electrode spacing (small area) and effectively improve the radiation hardness. In order to expand the application range of the 3D electrode detector, we first propose a 3D large-area silicon detector with a large sensitive volume, and realize multiple floating rings on the upper and lower surfaces of the detector. Due to the influence of different charge states and energy levels in the Si-SiO2 interface system, the top and bottom of the 3D P+ electrode are more prone to avalanche breakdown in the 3D large-area detector before the detector is completely depleted or the carrier saturation drift velocity is reached. Moreover, the electric field distribution becomes very uneven under the influence of the oxide charge, resulting in non-equilibrium carriers that cannot drift in the optimal path parallel to the detector surface. In this paper, the effect of floating rings on the performance of a 3D large-area silicon detector is studied by TCAD simulation. It can increase avalanche breakdown voltage by 14 times in a non-irradiated environment, and can work safely in a moderate irradiated environment. The charge collection efficiency can be effectively improved by optimizing the drift path.

4.
Sensors (Basel) ; 22(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36146182

RESUMEN

The theoretical basis of a hypothetical spherical electrode detector was investigated in our previous work. It was found that the proposed detector has very good electrical characteristics, such as greatly reduced full depletion voltage, small capacitance and ultra-fast collection time. However, due to the limitations of current technology, spherical electrode detectors cannot be made. Therefore, in order to use existing CMOS technology to realize the fabrication of the detector, a hemispherical electrode detector is proposed. In this work, 3D modeling and simulation including potential and electric field distribution and hole concentration distribution are carried out using the TCAD simulation tools. In addition, the electrical characteristics, such as I-V, C-V, induced current and charge collection efficiency (CCE) with different radiation fluences, are studied to predict the radiation hardness property of the device. Furthermore, a customized manufacturing method is proposed and simulated with the TCAD-SPROCESS simulation tool. The key is to reasonably set the aspect ratio of the deep trench in the multi-step repetitive process and optimize parameters such as the angle, energy, and dose of ion implantation to realize the connection of the heavily doped region of the near-hemispherical electrode. Finally, the electrical characteristics of the process simulation are compared with the device simulation results to verify its feasibility.

5.
Micromachines (Basel) ; 12(11)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34832811

RESUMEN

The radiation fluence of high luminosity LHC (HL-LHC) is predicted up to 1 × 1016 1 MeV neq/cm2 in the ATLAS and CMS experiments for the pixel detectors at the innermost layers. The increased radiation leads to the degradation of the detector properties, such as increased leakage current and full depletion voltage, and reduced signals and charge collection efficiency, which means it is necessary to develop the radiation hard semiconductor devices for very high luminosity colliders. In our previous study about ultra-fast 3D-trench electrode silicon detectors, through induced transient current simulation with different minimum ionizing particle (MIP) hitting positions, the ultra-fast response times ranging from 30 ps to 140 ps were verified. In this work, the full depletion voltage, breakdown voltage, leakage current, capacitance, weighting field and MIP induced transient current (signal) of the detector after radiation at different fluences will be simulated and calculated with professional software, namely the finite-element Technology Computer-Aided Design (TCAD) software frameworks. From analysis of the simulation results, one can predict the performance of the detector in heavy radiation environment. The fabrication of pixel detectors will be carried out in CMOS process platform of IMECAS based on ultra-pure high resistivity (up to 104 ohm·cm) silicon material.

6.
Adv Sci (Weinh) ; 8(20): e2102915, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34473424

RESUMEN

Understanding the relationship between the electronic state of active sites and N2 reduction reaction (NRR) performance is essential to explore efficient electrocatalysts. Herein, atomically dispersed Fe and Mo sites are designed and achieved in the form of well-defined FeN4 and MoN4 coordination in polyphthalocyanine (PPc) organic framework to investigate the influence of the spin state of FeN4 on NRR behavior. The neighboring MoN4 can regulate the spin state of Fe center in FeN4 from high-spin (dxy 2 dyz 1 dxz 1 d z 2 1 d x 2 - y 2 1 ) to medium-spin (dxy 2 dyz 2 dxz 1 d z 2 1 ), where the empty d orbitals and separate d electron favor the overlap of Fe 3d with the N 2p orbitals, more effectively activating N≡N triple bond. Theoretical modeling suggests that the NRR preferably takes place on FeN4 instead of MoN4 , and the transition of Fe spin state significantly lowers the energy barrier of the potential determining step, which is conducive to the first hydrogenation of N2 . As a result, FeMoPPc with medium-spin FeN4 exhibits 2.0 and 9.0 times higher Faradaic efficiency and 2.0 and 17.2 times higher NH3 yields for NRR than FePPc with high-spin FeN4 and MoPPc with MoN4 , respectively. These new insights may open up opportunities for exploiting efficient NRR electrocatalysts by atomically regulating the spin state of metal centers.

7.
Nat Commun ; 12(1): 1734, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741940

RESUMEN

As low-cost electrocatalysts for oxygen reduction reaction applied to fuel cells and metal-air batteries, atomic-dispersed transition metal-nitrogen-carbon materials are emerging, but the genuine mechanism thereof is still arguable. Herein, by rational design and synthesis of dual-metal atomically dispersed Fe,Mn/N-C catalyst as model object, we unravel that the O2 reduction preferentially takes place on FeIII in the FeN4 /C system with intermediate spin state which possesses one eg electron (t2g4eg1) readily penetrating the antibonding π-orbital of oxygen. Both magnetic measurements and theoretical calculation reveal that the adjacent atomically dispersed Mn-N moieties can effectively activate the FeIII sites by both spin-state transition and electronic modulation, rendering the excellent ORR performances of Fe,Mn/N-C in both alkaline and acidic media (halfwave positionals are 0.928 V in 0.1 M KOH, and 0.804 V in 0.1 M HClO4), and good durability, which outperforms and has almost the same activity of commercial Pt/C, respectively. In addition, it presents a superior power density of 160.8 mW cm-2 and long-term durability in reversible zinc-air batteries. The work brings new insight into the oxygen reduction reaction process on the metal-nitrogen-carbon active sites, undoubtedly leading the exploration towards high effective low-cost non-precious catalysts.

8.
Nanoscale Res Lett ; 9(1): 109, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24606946

RESUMEN

Bi-phase dispersible ZnO-Au hybrid nanoparticles were synthesized via one-pot non-aqueous nanoemulsion using the triblock copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) as the surfactant. The characterization shows that the polymer-laced ZnO-Au nanoparticles are monosized and of high crystallinity and demonstrate excellent dispersibility and optical performance in both organic and aqueous medium, revealing the effects of quantum confinement and medium. The findings show two well-behaved absorption bands locating at approximately 360 nm from ZnO and between 520 and 550 nm from the surface plasmon resonance of the nanosized Au and multiple visible fingerprint photoluminescent emissions. Consequently, the wide optical absorbance and fluorescent activity in different solvents could be promising for biosensing, photocatalysis, photodegradation, and optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...