Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fitoterapia ; 172: 105753, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992780

RESUMEN

Alpinia zerumbet is a food flavor additive and a traditional medicine herb around the world. Several studies have reported that A. zerumbet has excellent effects on a variety of cardiovascular diseases, but its potential hypertensive applications, and pharmacokinetic features of main active substances have not been fully investigated. The mechanism of anti-hypertension with ethyl acetate extracts of A. zerumbet fruits (AZEAE) was evaluated by L-NNA-induced hypertensive rats and L-NAME-injured human umbilical vein endothelial cells (HUVECs). Blood pressure, echocardiographic cardiac index and H&E staining were used to preliminary evaluate the antihypertensive effect of AZEAE, the levels of TNF-α, IL-6, and IL-1ß were evaluated by ELISA, and the proteins expression of IL-1ß, IL-18, AGTR1, VCAM, iNOS, EDN1 and eNOS were also evaluated. In addition, isolation, identification, and activity screening of bioactive compounds were carried ou. Next, pharmacokinetics and tissues distribution of dihydro-5,6-dehydrokavain (DDK) in vivo were measured, and preliminary absorption mechanism was conducted with Caco-2 cell monolayers. AZEAE remarkably enhanced the state of hypertensive rats. Twelve compounds were isolated and identified, and five compounds were isolated from this plant for the first time. The isolated compounds also exhibited good resistance against injury of HUVECs. Moreover, pharmacokinetics and Caco-2 cell monolayers demonstrated AZEAE had better absorption capacity than DDK, and DDK exhibited differences in tissues distribution and gender difference. This study was the first to assess the potential hypertensive applications of A. zerumbet in vivo and vitro, and the first direct and concise study of the in vivo behavior of DDK and AZEAE.


Asunto(s)
Alpinia , Antihipertensivos , Ratas , Humanos , Animales , Antihipertensivos/farmacología , Células CACO-2 , Estructura Molecular , Células Endoteliales de la Vena Umbilical Humana , Extractos Vegetales/farmacología
2.
RSC Adv ; 13(5): 3346-3363, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36756416

RESUMEN

Alangium chinense has been used as a traditional folk medicine for centuries to treat rheumatism, skin diseases, and diabetes by the people of Southeast Asia. However, the bioactive constituents inhibiting COX-2 and cancer cells (HepG2, Caco-2, HeLa) remain unclear. In this study one new (14) along with twenty-four known compounds (1-13, 15-25) were isolated from the fibrous roots of Alangium chinense by chromatographic methods, and identified by NMR, and Gaussian and CD calculation. Compounds 1, 2, 13, 16, 17, 19, 20, 23, and 24 were isolated from this plant for the first time. Their inhibition effects on COX-2 enzyme and cancer cells were evaluated by MTT assay. Compounds 1-4, 13-14, and 16-18 can be used as good inhibitors against COX-2 enzyme, and compounds 1, 13, 14, and 17 were stronger than the positive control (celecoxib). In addition, molecular docking suggested that compounds 13, 17, and 18 belong to ellagic acids and have good inhibition against COX-2 enzyme. While compounds 1, 5, 13 and 21 showed cytotoxicity against HepG2 cells, compounds 2 and 21 showed cytotoxicity against Caco-2 cells, and compound 20 showed cytotoxicity against HeLa cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...