Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39339601

RESUMEN

Biodegradable microplastics (Bio-MPs) are a hot topic in soil research due to their potential to replace conventional microplastics. Biofertilizers are viewed as an alternative to inorganic fertilizers in agriculture due to their potential to enhance crop yields and food safety. The use of both can have direct and indirect effects on rhizosphere microorganisms. However, the influence of the coexistence of "Bio-MPs and biofertilizers" on rhizosphere microbial characteristics remains unclear. We investigated the effects of coexisting biofertilizers and Bio-MPs on the structure, function, and especially the carbon metabolic properties of crop rhizosphere bacteria, using a pot experiment in which polyethylene microplastics (PE-MPs) were used as a reference. The results showed that the existence of both microplastics (MPs) changed the physicochemical properties of the rhizosphere soil. Exposure to MPs also remarkably changed the composition and diversity of rhizosphere bacteria. The network was more complex in the Bio-MPs group. Additionally, metagenomic analyses showed that PE-MPs mainly affected microbial vitamin metabolism. Bio-MPs primarily changed the pathways related to carbon metabolism, such as causing declined carbon fixation/degradation and inhibition of methanogenesis. After partial least squares path model (PLS-PM) analysis, we observed that both materials influenced the rhizosphere environment through the bacterial communities and functions. Despite the degradability of Bio-MPs, our findings confirmed that the coexistence of biofertilizers and Bio-MPs affected the fertility of the rhizosphere. Regardless of the type of plastic, its use in soil requires an objective and scientifically grounded approach.

3.
Microbiol Res ; 286: 127785, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38851011

RESUMEN

Carbohydrates play a pivotal role in nutrient recycling and regulation of algal-bacterial interactions. Despite their ecological significance, the intricate molecular mechanisms governing regulation of phycosphere carbohydrates by bacterial taxa linked with natural algal bloom have yet to be fully elucidated. Here, a comprehensive temporal metagenomic analysis was conducted to explore the carbohydrate-active enzyme (CAZyme) genes in two discrete algal bloom microorganisms (Gymnodinium catenatum and Phaeocystis globosa) across three distinct bloom stages: pre-bloom, peak bloom, and post-bloom. Elevated levels of extracellular carbohydrates, primarily rhamnose, galactose, glucose, and arabinose, were observed during the initial and post-peak stages. The prominent CAZyme families identified-glycoside hydrolases (GH) and carbohydrate-binding modules (CBMs)-were present in both algal bloom occurrences. In the G. catenatum bloom, GH23/24 and CBM13/14 were prevalent during the pre-bloom and peak bloom stages, whereas GH2/3/30 and CBM12/24 exhibited increased prevalence during the post-bloom phase. In contrast, the P. globosa bloom had a dominance of GH13/23 and CBM19 in the initial phase, and this was succeeded by GH3/19/24/30 and CBM54 in the later stages. This gene pool variation-observed distinctly in specific genera-highlighted the dynamic structural shifts in functional resources driven by temporal alterations in available substrates. Additionally, ecological linkage analysis underscored a correlation between carbohydrates (or their related genes) and phycospheric bacteria, hinting at a pattern of bottom-up control. These findings contribute to understanding of the dynamic nature of CAZymes, emphasizing the substantial influence of substrate availability on the metabolic capabilities of algal symbiotic bacteria, especially in terms of carbohydrates.


Asunto(s)
Bacterias , Metabolismo de los Hidratos de Carbono , Eutrofización , Metabolismo de los Hidratos de Carbono/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Dinoflagelados/genética , Dinoflagelados/metabolismo , Metagenómica , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Plancton/genética , Plancton/metabolismo , Haptophyta/genética , Haptophyta/metabolismo , Agua de Mar/microbiología , Metagenoma , Filogenia
4.
Environ Int ; 188: 108768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788416

RESUMEN

Symbiotic microorganisms play critical ecophysiological roles that facilitate the maintenance of coral health. Currently, information on the gene and protein pathways contributing to bleaching responses is lacking, including the role of autoinducers. Although the autoinducer AI-1 is well understood, information on AI-2 is insufficient. Here, we observed a 3.7-4.0 times higher abundance of the AI-2 synthesis gene luxS in bleached individuals relative to their healthy counterparts among reef-building coral samples from the natural environment. Laboratory tests further revealed that AI-2 contributed significantly to an increase in coral bleaching, altered the ratio of potential probiotic and pathogenic bacteria, and suppressed the antiviral activity of specific pathogenic bacteria while enhancing their functional potential, such as energy metabolism, chemotaxis, biofilm formation and virulence release. Structural equation modeling indicated that AI-2 influences the microbial composition, network structure, and pathogenic features, which collectively contribute to the coral bleaching status. Collectively, our results offer novel potential strategies for coral conservation based on a signal manipulation approach.


Asunto(s)
Antozoos , Homeostasis , Percepción de Quorum , Simbiosis , Antozoos/microbiología , Antozoos/fisiología , Animales , Homoserina/análogos & derivados , Homoserina/metabolismo , Arrecifes de Coral , Lactonas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
5.
Nat Commun ; 15(1): 2063, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453919

RESUMEN

Understanding how organisms have adapted to persist in unpredictable environments is a fundamental goal in biology. Bet hedging, an evolutionary adaptation observed from microbes to humans, facilitates reproduction and population persistence in randomly fluctuating environments. Despite its prevalence, empirical evidence in microalgae, crucial primary producers and carbon sinks, is lacking. Here, we report a bet-hedging strategy in the unicellular microalga Haematococcus pluvialis. We show that isogenic populations reversibly diversify into heterophenotypic mobile and non-mobile cells independently of environmental conditions, likely driven by stochastic gene expression. Mobile cells grow faster but are stress-sensitive, while non-mobile cells prioritise stress resistance over growth. This is due to shifts from growth-promoting activities (cell division, photosynthesis) to resilience-promoting processes (thickened cell wall, cell enlargement, aggregation, accumulation of antioxidant and energy-storing compounds). Our results provide empirical evidence for bet hedging in a microalga, indicating the potential for adaptation to current and future environmental conditions and consequently conservation of ecosystem functions.


Asunto(s)
Ecosistema , Microalgas , Humanos , Evolución Biológica , División Celular , Reproducción
6.
J Hazard Mater ; 467: 133709, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38330650

RESUMEN

Microplastics (MPs) from the incomplete degradation of agricultural mulch can stress the effectiveness of biofertilizers and ultimately affect the rhizosphere environment of crops. Yet, the involved mechanisms are poorly known and robust empirical data is generally lacking. Here, conventional polyethylene (PE) MPs and poly(butylene adipate-co-butylene terephthalate) (PBAT) / poly(lactic acid) (PLA) biodegradable MPs (PBAT-PLA BioMPs) were investigated to assess their potential impact on the rhizosphere environment of Brassica parachinensis in the presence of Bacillus amyloliquefaciens biofertilizer. The results revealed that both MPs caused different levels of inhibited crop both above- and belowground crop biomass (up to 50.11% and 57.09%, respectively), as well as a significant decrease in plant height (up to 48.63% and 25.95%, respectively), along with an imbalance of microbial communities. Transcriptomic analyses showed that PE MPs mainly affected root's vitamin metabolism, whereas PBAT-PLA BioMPs mainly interfered with the lipid's enrichment. Metabolomic analyses further indicated that PE MPs interfered with amino acid synthesis that involved in crops' oxidative stress, and that PBAT-PLA BioMPs mainly affected the pathways associated with root growth. Additionally, PBAT-PLA BioMPs had a bigger ecological negative impact than did PE MPs, as evidenced by more pronounced alterations in root antioxidant abilities, a higher count of identified differential metabolites, more robust interrelationships among rhizosphere parameters, and a more intricate pattern of impacts on rhizosphere metrics. This study highlights the MPs' impact on crop rhizosphere in a biofertilizer environment from a rhizosphere multi-omics perspective, and has theoretical implications for scientific application of biofertilizers.


Asunto(s)
Microplásticos , Multiómica , Plásticos , Rizosfera , Polietileno , Productos Agrícolas , Poliésteres
7.
J Environ Manage ; 352: 120071, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38246103

RESUMEN

The effectiveness of biofertilizers as a cost-effective crop yield enhancer can be compromised by residual soil pollutants. However, the impact of accumulated polyadipate/butylene terephthalate microplastics (PBAT-MPs) from biodegradable mulch films on biofertilizer application and the consequent growth of crop plants remains unclear. Here, the effects of different levels of PBAT-MPs in soil treated with Bacillus amyloliquefaciens biofertilizer were assessed in a four-week potted experiment. PBAT-MPs significantly decreased the growth-promoting effect of the biofertilizer on Brassica chinensis L., resulting in a notable reduction in both above- and belowground biomass (up to 52.91% and 57.53%, respectively), as well as nitrate and crude fiber contents (up to 12.18% and 13.64%, respectively). In the rhizosphere microenvironment, PBAT-MPs increased soil organic carbon by 2.63-fold and organic matter by 2.68-fold, while enhancing sucrase (from 67.55% to 108.89%) and cellulase (from 31.26% to 49.10%) activities. PBAT-MPs also altered the rhizospheric bacterial community composition/diversity, resulting in more complex microbial networks. With regard to microbial function, PBAT-MPs impacted carbon metabolic function by inhibiting the 3-hydroxypropionate/4-hydroxybutyrate fixation pathway and influencing chitin and lignin degradation processes. Overall, the rhizospheric microbial profiles (composition, function, and network interactions) were the main contributors to plant growth inhibition. This study provides a practical case and theoretical basis for rational use of biodegradable mulch films and indicates that the residue of biodegradable films needs pay attention.


Asunto(s)
Alquenos , Carbono , Microplásticos , Plásticos , Suelo
8.
Front Microbiol ; 14: 1236925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928680

RESUMEN

Most signaling molecules are involved in inter-or intra-species communication, and signaling involving cross-kingdom cell-to-cell communication is limited. Howerver, algae and bacteria exchange nutrients and information in a range of interactions in marine environments. Multiple signaling molecules exist between algae and bacteria, including quorum-sensing molecules, nitric oxide, and volatile organic compounds. Recently, indole-3-acetic acid (IAA), an auxin hormone that is a well-studied signaling molecule in terrestrial ecosystems, was found to act as a cue in cross-kingdom communication between algae and bacteria in aquatic environments. To increase understanding of the roles of IAA in the phycosphere, the latest evidence regarding the ecological functions of IAA in cross-kingdom communication between algae and bacteria has been compiled in this review. The pathways of IAA biosynthesis, effects of IAA on algal growth & reproduction, and potential mechanisms at phenotypic and molecular levels are summarized. It is proposed that IAA is an important molecule regulating algal-bacterial interactions and acts as an invisible driving force in the formation of algal blooms.

9.
Environ Sci Pollut Res Int ; 29(59): 89557-89569, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35852747

RESUMEN

Cadmium (Cd) pollution in farmland soils severely affects agricultural production safety, thereby threatening human health. Sedum plumbizincicola is a Cd and Zn hyperaccumulator commonly used for the phytoremediation of Cd-contaminated soil. This study was aimed to improve the remediation effect of S. plumbizincicola on Cd-contaminated farmland soil and provide a theoretical basis for the enhancement of endophytic bacteria in the repair of Cd-contaminated soil with S. plumbizincicola. Four kinds of endophytic bacteria, namely Buttiauxella, Pedobacter, Aeromonas eucrenophila, and Ralstonia pickettii, were used, and soil culture experiments and pot experiments were conducted to explore the effects of endophytic bacteria on soil Cd speciation and phytoremediation efficiency of Cd-contaminated farmland soils. Under the experimental conditions, after inoculation with endophytic bacteria, the soil pH was effectively reduced, content of weak acid-extracted Cd and oxidizable Cd increased, and content of reducible Cd and residual Cd decreased. Soil Cd activity was increased, and the availability coefficient of soil Cd increased by 1.15 to 6.41 units compared with that of the control (CK2). Compared with CK2, the biomass of S. plumbizincicola significantly increased by 23.23-55.12%; Cd content in shoots and roots of S. plumbizincicola increased by 29.63-46.01% and 11.42-84.47%, respectively; and bioconcentration factor was 2.13 to 2.72 times that of CK2. The Cd removal rate of S. plumbizincicola monocropping was 48.25%. When S. plumbizincicola was planted with inoculating endophytic bacteria, the Cd removal rate in the soil reached 61.18-71.49%, which was significantly higher than that of CK2 (p < 0.05). The treatment with endophytic bacteria activated soil Cd, promoted the growth of S. plumbizincicola, increased its Cd content, and enhanced the phytoremediation of Cd-contaminated farmland soil. Therefore, endophytic bacteria can be used to improve the remediation efficiency of S. plumbizincicola in Cd-contaminated farmland soils.


Asunto(s)
Sedum , Contaminantes del Suelo , Humanos , Cadmio/análisis , Suelo , Granjas , Contaminantes del Suelo/análisis , Zinc/química , Biodegradación Ambiental , Bacterias
10.
Materials (Basel) ; 10(11)2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29149069

RESUMEN

A kriging modeling method is proposed to conduct the temperature uncertainty analysis of an injection mechanism in squeeze casting. A mathematical model of temperature prediction with multi input and single output is employed to estimate the temperature spatiotemporal distributions of the injection mechanism. The kriging model applies different weights to the independent variables according to spatial location of sample points and their correlation, thus reducing the estimation variance. The predicted value of the kriging model is compared with the sample data at the corresponding position to investigate the influence of the temperature uncertainty of the injection mechanism on the injection process including friction. The results indicate that the significant error is observed at a few sample points in the early injection due to the impact of the uncertainty facts. The variance mean and standard deviation obtained by the model calibrated by experimental samples reduce largely in comparison to those obtained from the initial kriging model. This study indicates that model calibration produces more accurate prediction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...