Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(22): eadn4203, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809978

RESUMEN

Learning causal relationships relies on understanding how often one event precedes another. To investigate how dopamine neuron activity and neurotransmitter release change when a retrospective relationship is degraded for a specific pair of events, we used outcome-selective Pavlovian contingency degradation in rats. Conditioned responding was attenuated for the cue-reward contingency that was degraded, as was dopamine neuron activity in the midbrain and dopamine release in the ventral striatum in response to the cue and subsequent reward. Contingency degradation also abolished the trial-by-trial history dependence of the dopamine responses at the time of trial outcome. This profile of changes in cue- and reward-evoked responding is not easily explained by a standard reinforcement learning model. An alternative model based on learning causal relationships was better able to capture dopamine responses during contingency degradation, as well as conditioned behavior following optogenetic manipulations of dopamine during noncontingent rewards. Our results suggest that mesostriatal dopamine encodes the contingencies between meaningful events during learning.


Asunto(s)
Señales (Psicología) , Dopamina , Neuronas Dopaminérgicas , Recompensa , Animales , Dopamina/metabolismo , Ratas , Masculino , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Condicionamiento Clásico , Estriado Ventral/metabolismo , Estriado Ventral/fisiología , Aprendizaje/fisiología , Mesencéfalo/metabolismo , Mesencéfalo/fisiología , Refuerzo en Psicología
2.
World Neurosurg ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38599375

RESUMEN

OBJECTIVE: To analyze the factors related to the efficacy of consciousness-regaining therapy (CRT) for prolonged disorder of consciousness. METHODS: A retrospective analysis was conducted on the case data of 114 patients with prolonged disorder of consciousness (pDOC) admitted to the Department of Functional Neurosurgery of Tianjin Huanhu Hospital from January 2019 to January 2022 to explore the relevant factors that affect the efficacy of CRT for pDOC. Next, basic information on the cases, data on pDOC disease assessment, CRT methods, and efficacy evaluation were collected. RESULTS: These 114 patients were grouped, and a comparative analysis was done based on the efficacy at the end of treatment. Of these, 61 cases were allotted to the ineffective group and 53 cases to the effective group. There was a lack of statistical difference (P > 0.05) between the 2 groups based on gender, age, etiology, acute cerebral herniation, emergency craniotomy surgery, emergency decompressive craniectomy, time from onset to start of CRT, and CRT duration (P > 0.05). However, secondary hydrocephalus, CRT methods, JFK Coma Recovery Scale-Revised grading before treatment, and extended Glasgow Outcome Scale score at six months after treatment were found to be statistically different. The results of binary logistic regression analysis showed that the type of therapy (OR = 0.169, 95% CI: 0.057-0.508) affected the efficacy of CRT (P < 0.05). CONCLUSIONS: Personalized awakening therapy using various invasive CRT methods could improve the efficacy of therapy for pDOC compared with noninvasive therapy.

3.
bioRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585868

RESUMEN

Lack of cognitive flexibility is a hallmark of substance use disorders and has been associated with drug-induced synaptic plasticity in the dorsomedial striatum (DMS). Yet the possible impact of altered plasticity on real-time striatal neural dynamics during decision-making is unclear. Here, we identified persistent impairments induced by chronic ethanol (EtOH) exposure on cognitive flexibility and striatal decision signals. After a substantial withdrawal period from prior EtOH vapor exposure, male, but not female, rats exhibited reduced adaptability and exploratory behavior during a dynamic decision-making task. Reinforcement learning models showed that prior EtOH exposure enhanced learning from rewards over omissions. Notably, neural signals in the DMS related to the decision outcome were enhanced, while those related to choice and choice-outcome conjunction were reduced, in EtOH-treated rats compared to the controls. These findings highlight the profound impact of chronic EtOH exposure on adaptive decision-making, pinpointing specific changes in striatal representations of actions and outcomes as underlying mechanisms for cognitive deficits.

4.
Acta Neurochir (Wien) ; 166(1): 124, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457027

RESUMEN

BACKGROUND: In advanced Parkinson's disease (PD), axial symptoms are common and can be debilitating. Although deep brain stimulation (DBS) significantly improves motor symptoms, conventional high-frequency stimulation (HFS) has limited effectiveness in improving axial symptoms. In this study, we investigated the effects on multiple axial symptoms after DBS surgery with three different frequency programming paradigms comprising HFS, low-frequency stimulation (LFS), and variable-frequency stimulation (VFS). METHODS: This study involved PD patients who had significant preoperative axial symptoms and underwent bilateral subthalamic nucleus (STN) DBS. Axial symptoms, motor symptoms, medications, and quality of life were evaluated preoperatively (baseline). One month after surgery, HFS was applied. At 6 months post-surgery, HFS assessments were performed, and HFS was switched to LFS. A further month later, we conducted LFS assessments and switched LFS to VFS. At 8 months after surgery, VFS assessments were performed. RESULTS: Of the 21 PD patients initially enrolled, 16 patients were ultimately included in this study. Regarding HFS, all axial symptoms except for the Berg Balance Scale (p < 0.0001) did not improve compared with the baseline (all p > 0.05). As for LFS and VFS, all axial symptoms improved significantly compared with both the baseline and HFS (all p < 0.05). Moreover, motor symptoms and medications were significantly better than the baseline (all p < 0.05) after using LFS and VFS. Additionally, the quality of life of the PD patients after receiving LFS and VFS was significantly better than at the baseline and with HFS (all p < 0.0001). CONCLUSION: Our findings indicate that HFS is ineffective at improving the majority of axial symptoms in advanced PD. However, both the LFS and VFS programming paradigms exhibit significant improvements in various axial symptoms.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Enfermedad de Parkinson/terapia , Calidad de Vida
5.
Transl Psychiatry ; 14(1): 86, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336862

RESUMEN

Impulse control disorders (ICDs), a wide spectrum of maladaptive behaviors which includes pathological gambling, hypersexuality and compulsive buying, have been recently suggested to be triggered or aggravated by treatments with dopamine D2/3 receptor agonists, such as pramipexole (PPX). Despite evidence showing that impulsivity is associated with functional alterations in corticostriatal networks, the neural basis of the exacerbation of impulsivity by PPX has not been elucidated. Here we used a hotspot analysis to assess the functional recruitment of several corticostriatal structures by PPX in male rats identified as highly (HI), moderately impulsive (MI) or with low levels of impulsivity (LI) in the 5-choice serial reaction time task (5-CSRTT). PPX dramatically reduced impulsivity in HI rats. Assessment of the expression pattern of the two immediate early genes C-fos and Zif268 by in situ hybridization subsequently revealed that PPX resulted in a decrease in Zif268 mRNA levels in different striatal regions of both LI and HI rats accompanied by a high impulsivity specific reduction of Zif268 mRNA levels in prelimbic and cingulate cortices. PPX also decreased C-fos mRNA levels in all striatal regions of LI rats, but only in the dorsolateral striatum and nucleus accumbens core (NAc Core) of HI rats. Structural equation modeling further suggested that the anti-impulsive effect of PPX was mainly attributable to the specific downregulation of Zif268 mRNA in the NAc Core. Altogether, our results show that PPX restores impulse control in highly impulsive rats by modulation of limbic frontostriatal circuits.


Asunto(s)
Agonistas de Dopamina , Conducta Impulsiva , Ratas , Masculino , Animales , Pramipexol/farmacología , Conducta Impulsiva/fisiología , Agonistas de Dopamina/farmacología , Dopamina/metabolismo , ARN Mensajero
6.
J Colloid Interface Sci ; 657: 716-727, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071820

RESUMEN

The ultrathin multi-nanolayered structure with ultrathin monolayer thickness (<10 nm) and certain interlayer spacing can significantly shorten Li+ paths and alleviate the volume effect for Li+-storage materials. However, unlike layered materials such as MXene and MoS2, shear ReO3-type niobates have difficulty forming ultrathin multi-nanolayered structures due to their crystal structures, which still remains a challenge. Herein, by a polyvinylpyrrolidone (PVP)-assisted solvothermal method, we first synthesize ultrathin multi-nanolayered Cu2Nb34O87-x with oxygen vacancies composed of ultrathin nanolayers (2-10 nm in thickness) and interlayer spacing (1-5 nm). Oxygen vacancies can radically enhance the inherent electronic/ionic conductivity and Li+ diffusion coefficient of this material. The PVP-induced formation mechanism of this material is expounded in detail. The well-preserved ultrathin multi-nanolayered structure and excellent multi-electron electrochemical reversibility (Nb5+ â†” Nb4+ â†”N b3+ and Cu2+ â†” Cu+) of this material during cycling are fully verified. Based on an ultrathin multi-nanolayered structure and oxygen vacancies, this material as the anode of lithium-ion batteries is highly competitive among reported shear ReO3-type Cu-Nb-O anodes, displaying a high reversible capacity (315.3 mAh g-1 after 300 cycles at 1 C), durable cycling stability (85.7 % capacity retention after 1000 cycles at 10 C), and outstanding rate performance. Moreover, the application of this material to lithium-ion capacitors generates a large energy density (97.9 Wh kg-1 at 87.5 W kg-1) and a high power density (17,500 W kg-1 at 12.6 Wh kg-1), thus further indicating its fast faradaic pseudocapacitive behavior for practical applications. The results of this work indicate a breakthrough in synthesizing ultrathin multi-nanolayered shear ReO3-type niobates.

7.
Int Wound J ; 21(3): e14465, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37926487

RESUMEN

Diabetic foot ulcers (DFUs) are one of the most common and challenging complications of diabetes, yet our understanding of their pathogenesis remains limited. We collected gene expression data of DFU patients from public databases. Bioinformatics tools were applied for systematic analysis, including the identification of differentially expressed genes (DEGs), weighted gene co-expression network analysis (WGCNA) and enrichment analysis. We further used single-cell RNA sequencing to identify the distribution of different cell populations in DFU. Finally, key results were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and flow cytometry. We identified 217 DEGs between ulcerated and healthy skin, and 37 DEGs between healing ulcers and ulcers. WGCNA revealed that the cyan module had the highest positive correlation with healthy skin and negative correlation with ulcers. The black module had the highest negative correlation with healthy skin and positive correlation with ulcers. Enrichment analysis showed that the genes in the cyan module were mainly associated with complement and coagulation cascades, while the genes in the black module were mainly associated with the IL-17 signalling pathway. In addition, CD8 T cells were significantly lower in ulcers than in healthy and healing ulcers. By comparing marker genes of CD8 T cells, we identified key genes in the cyan and black modules and validated their expression using RT-qPCR. The proportion of CD8 T cells was increased in healing ulcers. Flow cytometry detected increased levels of CD8 T, B and natural killer cells in healing ulcers. CD8 T cells and related key genes play an important role in the healing process of DFU. The results of this study provide a new perspective for understanding the pathogenesis and treatment of DFU.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37831747

RESUMEN

Lithium (Li) metal is considered as the "holy grail" of anode materials for next-generation high energy batteries. However, notorious dendrite growth and interfacial instability could induce irreversible capacity loss and safety issues, limiting the practical application of Li metal anodes. Herein, we develop a novel approach to construct a borate-based artificial solid-electrolyte interphase (designated as B-SEI) through the reaction of metallic Li with triethylamine borane (TEAB). According to our cryogenic electron microscopy (Cryo-EM) characterization results, the artificial SEI adopts a glass-crystal bilayer structure, which facilitates uniform Li-ion transport and inhibits dendrite growth during Li plating. Benefiting from such an artificial SEI, the Li anode delivers an improved rate performance and prolonged cycle life. The symmetric Li/B-SEI||Li/B-SEI cell can maintain stable cycling for 700 h at a high current density of 3 mA cm-2. The full-cell pairing Li/B-SEI with LiFePO4 only exhibits minimal capacity decay after 500 cycles in a conventional carbonate-based electrolyte. This work demonstrates the feasibility of building a boride-based artificial SEI to stabilize the Li metal anode based on microscopic characterization results and comprehensive electrochemical data, which represents a promising avenue to develop practical Li metal batteries.

9.
Micromachines (Basel) ; 14(9)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37763947

RESUMEN

In this study, we present a novel dual-polarized patch antenna that exhibits high isolation and two in-band transmission zeros (TZs). The design consists of a suspended metal patch, two feeding probes connected to an internal neutralization line (I-NL), and a T-shaped decoupling network (T-DN). The I-NL is responsible for generating the first TZ, and its decoupling principles are explained through an equivalent circuit model. Rigorous design formulas are also derived to aid in the construction of the feeding structure. The T-DN realizes the second TZ, resulting in further improvement of the decoupling bandwidth. Simulation and experimental results show that the proposed antenna has a wide operating bandwidth (2.5-2.7 GHz), high port isolation (>30 dB), and excellent efficiency (>85%).

10.
Acta Neurochir (Wien) ; 165(11): 3375-3384, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37770797

RESUMEN

BACKGROUND: The research findings on the effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) with Rapid Eye Movement Sleep Behavior Disorder (RBD) are inconsistent, and there is a lack of research on DBS electrode sites and their network effects for the explanation of the differences. Our objective is to explore the optimal stimulation sites (that is the sweet spot) and the brain network effects of STN-DBS for RBD in PD. METHODS: In this study, among the 50 PD patients who underwent STN-DBS treatment, 24 PD patients with RBD were screened. According to clinical scores and imaging data, the sweet spot of STN-DBS was analyzed in PD patients with RBD, and the optimal structure and functional network models of subthalamic stimulation were constructed. RESULTS: Bilateral STN-DBS can effectively improve the symptoms of RBD and other non-motor symptoms in 24 PD patients with RBD. RBD Questionnaire-Hong Kong (RBDQ-HK) score was 41.33 ± 17.45 at baseline and 30.83 ± 15.83 at 1-year follow-up, with statistical significance between them (P < 0.01). However, the MoCA score was an exception with a baseline of 22.04 ± 4.28 and a 1-year follow-up of 21.58 ± 4.33, showing no statistical significance (P = 0.12). The sweet spot and optimal network connectivity models for RBD improvement have been validated as effective. CONCLUSIONS: Bilateral STN-DBS can improve the symptoms of RBD in PD. There exist the sweet spot and brain network effects of bilateral STN-DBS in the treatment of PD with RBD. Our study also demonstrates that RBD is a brain network disease.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/tratamiento farmacológico , Trastorno de la Conducta del Sueño REM/terapia , Estimulación Encefálica Profunda/métodos , Resultado del Tratamiento
11.
Small ; 19(48): e2303763, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37507834

RESUMEN

Lithium-ion batteries (LIBs) are very popular electrochemical energy-storage devices. However, their applications in extreme environments are hindered because their low- and high-temperature electrochemical performance is currently unsatisfactory. In order to build all-climate LIBs, it is highly desirable to fully understand the underlying temperature effects on electrode materials. Here, based on a novel porous-microspherical yttrium niobate (Y0.5 Nb24.5 O62 ) model material, this work demonstrates that the operation temperature plays vital roles in electrolyte decomposition on electrode-material surfaces, electrochemical kinetics, and crystal-structure evolution. When the operation temperature increases, the reaction between the electrolyte and the electrode material become more intensive, causing the formation of thicker solid electrolyte interface (SEI) films, which decreases the initial Coulombic efficiency. Meanwhile, the electrochemical kinetics becomes faster, leading to the larger reversible capacity, higher rate capability, and more suitable working potential (i.e., lower working potential for anodes and higher working potential for cathodes). Additionally, the maximum unit-cell-volume change becomes larger, resulting in poorer cyclic stability. The insight gains here can provide a universal guide for the exploration of all-climate electrode materials and their modification methods.

12.
Micromachines (Basel) ; 14(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37512700

RESUMEN

This paper presents a flexible method for designing a bandpass filter (BPF) using pixel structure and genetic algorithm (GA) optimization. The pixel structure is made up of a grid of metallic microstrip stubs, and the GA is utilized to determine the connections between these stubs. The pixel structure enables the construction of step impedance and shunt branches, which are used to design a traditional BPF. To enhance the design freedom, one side of the discrete grids is connected to the ground via metallic holes. For verification, a BPF was designed, simulated, and measured. The experimental results showed that the 10 dB return loss bandwidth ranges from 1.1 to 1.9 GHz and the insertion loss is approximately 2.5 dB. There is good agreement between the calculation, EM simulation, and measurement results. The proposed GA-based design method offers significant advantages in terms of one-time EM simulation, feasibility, and labor time savings, making it more convenient than the traditional design method.

13.
Nat Commun ; 14(1): 3886, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391566

RESUMEN

Addictive substance use impairs cognitive flexibility, with unclear underlying mechanisms. The reinforcement of substance use is mediated by the striatal direct-pathway medium spiny neurons (dMSNs) that project to the substantia nigra pars reticulata (SNr). Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs), which receive extensive striatal inhibition. Here, we hypothesized that increased dMSN activity induced by substance use inhibits CINs, reducing cognitive flexibility. We found that cocaine administration in rodents caused long-lasting potentiation of local inhibitory dMSN-to-CIN transmission and decreased CIN firing in the dorsomedial striatum (DMS), a brain region critical for cognitive flexibility. Moreover, chemogenetic and time-locked optogenetic inhibition of DMS CINs suppressed flexibility of goal-directed behavior in instrumental reversal learning tasks. Notably, rabies-mediated tracing and physiological studies showed that SNr-projecting dMSNs, which mediate reinforcement, sent axonal collaterals to inhibit DMS CINs, which mediate flexibility. Our findings demonstrate that the local inhibitory dMSN-to-CIN circuit mediates the reinforcement-induced deficits in cognitive flexibility.


Asunto(s)
Cuerpo Estriado , Refuerzo en Psicología , Preparaciones Farmacéuticas , Neuronas Colinérgicas , Cognición
14.
Angew Chem Int Ed Engl ; 62(30): e202305723, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37285084

RESUMEN

A stable solid electrolyte interphase (SEI) layer is crucial for lithium metal anode (LMA) to survive in long-term cycling. However, chaotic structures and chemical inhomogeneity of natural SEI make LMA suffering from exasperating dendrite growth and severe electrode pulverization, which hinder the practical application of LMAs. Here, we design a catalyst-derived artificial SEI layer with an ordered polyamide-lithium hydroxide (PA-LiOH) bi-phase structure to modulate ion transport and enable dendrite-free Li deposition. The PA-LiOH layer can substantially suppress the volume changes of LMA during Li plating/stripping cycles, as well as alleviate the parasitic reactions between LMA and electrolyte. The optimized LMAs demonstrate excellent stability in Li plating/stripping cycles for over 1000 hours at an ultra-high current density of 20 mA cm-2 in Li||Li symmetric cells. A high coulombic efficiency up to 99.2 % in Li half cells in additive-free electrolytes is achieved even after 500 cycles at a current density of 1 mA cm-2 with a capacity of 1 mAh cm-2 .

15.
Neuropharmacology ; 237: 109619, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290535

RESUMEN

The reinforcement of voluntary alcohol-seeking behavior requires dopamine-dependent long-term synaptic plasticity in the striatum. Specifically, the long-term potentiation (LTP) of direct-pathway medium spiny neurons (dMSNs) in the dorsomedial striatum (DMS) promotes alcohol drinking. However, it remains unclear whether alcohol induces input-specific plasticity onto dMSNs and whether this plasticity directly drives instrumental conditioning. In this study, we found that voluntary alcohol intake selectively strengthened glutamatergic transmission from the medial prefrontal cortex (mPFC) to DMS dMSNs in mice. Importantly, mimicking this alcohol-induced potentiation by optogenetically self-stimulating mPFC→dMSN synapse with an LTP protocol was sufficient to drive the reinforcement of lever pressing in operant chambers. Conversely, induction of a post-pre spike timing-dependent LTD at this synapse time-locked to alcohol delivery during operant conditioning persistently decreased alcohol-seeking behavior. Our results establish a causal relationship between input- and cell-type-specific corticostriatal plasticity and the reinforcement of alcohol-seeking behavior. This provides a potential therapeutic strategy to restore normal cortical control of dysregulated basal ganglia circuitries in alcohol use disorder.


Asunto(s)
Cuerpo Estriado , Plasticidad Neuronal , Ratones , Animales , Plasticidad Neuronal/fisiología , Ganglios Basales , Potenciación a Largo Plazo , Neostriado , Etanol/farmacología
16.
Neural Plast ; 2023: 4142053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113750

RESUMEN

Background: Prolonged disorders of consciousness (pDOC) are common in neurology and place a heavy burden on families and society. This study is aimed at investigating the characteristics of brain connectivity in patients with pDOC based on quantitative EEG (qEEG) and extending a new direction for the evaluation of pDOC. Methods: Participants were divided into a control group (CG) and a DOC group by the presence or absence of pDOC. Participants underwent magnetic resonance imaging (MRI) T1 three-dimensional magnetization with a prepared rapid acquisition gradient echo (3D-T1-MPRAGE) sequence, and video EEG data were collected. After calculating the power spectrum by EEG data analysis tool, DTABR ((δ + θ)/(α + ß) ratio), Pearson's correlation coefficient (Pearson r), Granger's causality, and phase transfer entropy (PTE), we performed statistical analysis between two groups. Finally, receiver operating characteristic (ROC) curves of connectivity metrics were made. Results: The proportion of power in frontal, central, parietal, and temporal regions in the DOC group was lower than that in the CG. The percentage of delta power in the DOC group was significantly higher than that in the CG, the DTABR in the DOC group was higher than that in the CG, and the value was inverted. The Pearson r of the DOC group was higher than that of CG. The Pearson r of the delta band (Z = -6.71, P < 0.01), theta band (Z = -15.06, P < 0.01), and alpha band (Z = -28.45, P < 0.01) were statistically significant. Granger causality showed that the intensity of directed connections between the two hemispheres in the DOC group at the same threshold was significantly reduced (Z = -82.43, P < 0.01). The PTE of each frequency band in the DOC group was lower than that in the CG. The PTE of the delta band (Z = -42.68, P < 0.01), theta band (Z = -56.79, P < 0.01), the alpha band (Z = -35.11, P < 0.01), and beta band (Z = -63.74, P < 0.01) had statistical significance. Conclusion: Brain connectivity analysis based on EEG has the advantages of being noninvasive, convenient, and bedside. The Pearson r of DTABR, delta, theta, and alpha bands, Granger's causality, and PTE of the delta, theta, alpha, and beta bands can be used as biological markers to distinguish between pDOC and healthy people, especially when behavior evaluation is difficult or ambiguous; it can supplement clinical diagnosis.


Asunto(s)
Trastornos de la Conciencia , Electroencefalografía , Humanos , Trastornos de la Conciencia/diagnóstico por imagen , Electroencefalografía/métodos , Encéfalo/diagnóstico por imagen , Estado de Conciencia , Imagen por Resonancia Magnética/métodos
17.
Adv Sci (Weinh) ; 10(20): e2300583, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37119465

RESUMEN

Niobate Li+ -storage anode materials with shear ReO3 crystal structures have attracted intensive attention due to their inherent safety and large capacities. However, they generally suffer from limited rate performance, cyclic stability, and temperature adaptability, which are rooted in their insufficient interlayer spacings. Here, sodium niobate (NaNb13 O33 ) micron-sized particles are developed as a new anode material owning the largest interlayer spacing among the known shear ReO3 -type niobates. The large interlayer spacing of NaNb13 O33 enables very fast Li+ diffusivity, remarkably contributing to its superior rate performance with a 2500 to 125 mA g-1 capacity percentage of 63.2%. Moreover, its large interlayer spacing increases the volume-accommodation capability during lithiation, allowing small unit-cell-volume variations (maximum 6.02%), which leads to its outstanding cyclic stability with 87.9% capacity retention after as long as 5000 cycles at 2500 mA g-1 . Its cyclic stability is the best in the research field of niobate micron-sized particles, and comparable to that of "zero-strain" Li4 Ti5 O12 . At a low temperature of -10 °C, it also exhibits high rate performance with a 1250 to 125 mA g-1 capacity percentage of 65.6%, and even better cyclic stability with 105.4% capacity retention after 5000 cycles at 1250 mA g-1 . These comprehensively good electrochemical results pave the way for the practical application of NaNb13 O33 in high-performance Li+ storage.

18.
Small ; 19(28): e2300849, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36988005

RESUMEN

High-concentrated non-flammable electrolytes (HCNFE) in lithium metal batteries prevent thermal runaway accidents, but the microstructure of their solid electrolyte interphase (SEI) remains largely unexplored, due to the lack of direct imaging tools. Herein, cryo-HRTEM is applied to directly visualize the native state of SEI at the atomic scale. In HCNFE, SEI has a uniform laminated crystalline-amorphous structure that can prevent further reaction between the electrolyte and lithium. The inorganic SEI component, Li2 S2 O7 , is precisely identified by cryo-HRTEM. Density functional theory (DFT) calculations demonstrate that the final Li2 S2 O7 phase has suitable natural transmission channels for Li-ion diffusion and excellent ionic conductivity of 1.2 × 10-5 S cm-1 .

19.
Chem Sci ; 14(5): 1184-1193, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36756331

RESUMEN

Nonflammable electrolytes are critical for the safe operation of high-voltage lithium-ion batteries (LIBs). Although organic phosphates are effective flame retardants, their poor electrochemical stability with a graphite (Gr) anode and Ni-rich cathodes would lead to the deterioration of electrode materials and fast capacity decay. Herein, we develop a safe and high-performance electrolyte formulation for high-voltage (4.6 V-class) LIBs using flame-retarding ethoxy(pentafluoro) cyclotriphosphazene (PFPN) as a non-solvating diluent for the high-concentration carbonate-ether hybrid electrolyte. In contrast to conventional nonflammable additives with restricted dosage, the high level of PFPN (69% mass ratio in our electrolyte design) could significantly increase the electrolyte flash point and protect the favored anion-rich inner solvation sheath because of its non-solvating feature, thus preventing solvent co-intercalation and structural damage to the Gr anode. The nonflammable electrolyte could also form a stable LiF-rich cathode electrolyte interphase (CEI), which enables superior electrochemical performances of Gr‖LiNi0.8Mn0.1Co0.1O2 (NMC811) full cells at high voltages (∼82.0% capacity retention after 1000 cycles at 4.5 V; 89.8% after 300 cycles at 4.6 V) and high temperatures (50 °C). This work sheds light on the electrolyte design and interphase engineering for developing practical safe high-energy-density LIBs.

20.
Nano Lett ; 22(23): 9614-9620, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36454039

RESUMEN

Rechargeable solid-state Na metal batteries (SSNMB) can offer high operational safety and energy density. However, poor solid-solid contact between the electrodes and the electrolyte can dramatically increase interfacial resistance and Na dendrite formation, even at low current rates. Therefore, we developed a carbon-fiber-supported liquid Na-K alloy anode that ensures close anode-electrolyte contact, enabling superior cycle stability and rate capability. We then demonstrated the first cryogenic transmission electron microscopy (cryo-TEM) characterization of an SSNMB, capturing the evolution of solid-electrolyte interphase (SEI) and revealing both crystalline and amorphous phases, which could facilitate ion transport and prevent continuous side reactions. By enhancing contact between the Na-K alloy and solid-state electrolyte, these symmetric cells are capable of cycling for over 800 h without notable increased polarization and enable an unprecedented critical current density (CCD) at 40 mA cm-2. Our liquid Na-K alloy approach offers a promising strategic avenue toward commercial SSNMBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA