Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 12(27): 6605-6616, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38895790

RESUMEN

Flexible wearable sensors that combine excellent flexibility, high elasticity, sensing capabilities, and outstanding biocompatibility are gaining increasing attention. In this study, we successfully develop a robust and elastic hydrogel-based flexible wearable sensor by modulating molecular structures combined with metal ion coordination. We leverage three N-acryloyl amino acid monomers, including N-acryloyl glycine (AG), N-acryloyl alanine (AA), and N-acryloyl valine (AV) with different hydrophobic groups adjacent to the carboxyl group, to copolymerize with acrylamide (AM) in the presence of Zr4+ for hydrogel preparation in one step (P(AM3-AG/AA/AV0.06)-Zr0.034+ hydrogels). Our investigation reveals that the P(AM3-AV0.06)-Zr0.034+ hydrogel with the most hydrophobic side group demonstrates superior mechanical properties (1.1 MPa tensile stress, 3566 kJ m-3 toughness and 1.3 kJ m-2 fracture energy) and resilience to multiple tensile (30% strain, 500 cycles) and compression cycling (50% strain, 500 cycles). Moreover, the P(AM3-AV0.06)-Zr0.034+ hydrogel exhibits good biocompatibility and high conductivity (1.1 S m-1) and responsivity (GF = 16.21), and is proved to be suitable as a flexible wearable sensor for comprehensive human activity monitoring.


Asunto(s)
Hidrogeles , Interacciones Hidrofóbicas e Hidrofílicas , Dispositivos Electrónicos Vestibles , Hidrogeles/química , Hidrogeles/síntesis química , Humanos , Circonio/química , Elasticidad , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Propiedades de Superficie
2.
Biomaterials ; 309: 122599, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38703409

RESUMEN

Development of bioadhesives that can be facilely delivered by endoscope and exhibit instant and robust adhesion with gastric tissues to promote gastric ulcer healing remains challenging. In this study, an advanced bioadhesive is prepared through free radical polymerization of ionized N-acryloyl phenylalanine (iAPA) and N-[tris (hydroxymethyl) methyl] acrylamide (THMA). The precursory polymer solution exhibits low viscosity with the capability for endoscope delivery, and the hydrophilic-hydrophobic transition of iAPA upon exposure to gastric acid can trigger gelation through phenyl groups assisted multiple hydrogen bonds formation and repel water molecules on tissue surface to establish favorable environment for interfacial interactions between THMA and functional groups on tissues. The in-situ formed hydrogel features excellent stability in acid environment (14 days) and exhibits firm wet adhesion to gastric tissue (33.4 kPa), which can efficiently protect the wound from the stimulation of gastric acid and pepsin. In vivo studies reveal that the bioadhesive can accelerate the healing of ulcers by inhibiting inflammation and promoting capillary formation in the acetic acid-induced gastric ulcer model in rats. Our work may provide an effective solution for the treatment of gastric ulcers clinically.


Asunto(s)
Úlcera Gástrica , Cicatrización de Heridas , Animales , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/inducido químicamente , Cicatrización de Heridas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Ratas , Ratas Sprague-Dawley , Masculino , Hidrogeles/química , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Fenilalanina/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-38685579

RESUMEN

When organic cross-linked polymers are combined with metal halide perovskite nanocrystals (PNCs) for realizing luminescent perovskite-polymer display materials, the stability of PNCs is enhanced and their shrinkage is suppressed. This work presents a feasible strategy for preparing CsPbBr3 nanocrystals (NCs) within a polydicyclopentadiene (PDCPD) thermosetting cross-linked resin matrix simultaneously via a one-step reaction. The obtained PDCPD@PNCs composite exhibits narrow peak half-widths (15-20 nm), high light transmittance (80%), low curing volume shrinkage (1.4%), tunable tensile properties, excellent stability, and a photoluminescence quantum yield (PLQY) of 44.3%. The composite material exhibits long-term stability in water, acid, and base solutions for over 90 days, with the PL intensity being maintained at over 90%. Furthermore, the composite is highly resistant to polar organic solvents owing to the insolubility imparted by cross-linking. White LEDs (WLED) fabricated using the as-prepared composite demonstrate excellent potential as light sources in optical devices.

4.
Macromol Rapid Commun ; 45(13): e2300737, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38521991

RESUMEN

Near-infrared (NIR)-triggered shape memory hydrogels with promising mechanical strength hold immense potential in the field of biomedical applications and soft actuators. However, the optical and mechanical properties of currently reported hydrogels usually suffer from limited solubility and dispersion of commonly used photothermal additives in hydrogels, thus restricting their practical implementations. Here,, a set of NIR-responsive shape memory hydrogels synthesized by polyaddition of diisocyanate-terminated poly(ethylene glycol), imidazolidinyl urea (IU), and p-benzoquinone dioxime (BQDO) is reported. The introduction of IU, a hydrogen bond reinforcing factor, significantly enhances the mechanical properties of the hydrogels, allowing for their tunable ranges of the ultimate tensile strength (0.4-2.5 MPa), elongation at break (210-450%), and Young's modulus (190-850 kPa). The unique hydrogels exhibit an intrinsic photothermal effect because of the covalently incorporated photothermal moiety (BQDO), and the photothermal supramolecular hydrogel shows controllable shape memory capabilities characterized by rapid recovery speed and high recovery ratio (>90%). This design provides new possibilities for applying shape memory hydrogels in the field of soft actuators.


Asunto(s)
Hidrogeles , Rayos Infrarrojos , Hidrogeles/química , Hidrogeles/síntesis química , Polietilenglicoles/química , Estructura Molecular , Resistencia a la Tracción , Urea/química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/síntesis química , Materiales Inteligentes/química
5.
Macromol Rapid Commun ; 45(11): e2400036, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38453138

RESUMEN

Preparation of materials that possess highly strong and tough properties simultaneously is a great challenge. Thermosetting resins as a type of widely used polymeric materials without synergistic strength and toughness limit their applications in some special fields. In this report, an effective strategy to prepare thermosetting resins with synergistic strength and toughness, is presented. In this method, the soft and rigid microspheres with dynamic hemiaminal bonds are fabricated first, followed by hot-pressing to crosslink at the interfaces. Specifically, the rigid or soft microspheres are prepared via precipitation polymerization. After hot-pressing, the resulting rigid-soft blending materials exhibit superior strength and toughness, simultaneously. As compared with the precursor rigid or soft materials, the toughness of the rigid-soft blending films (RSBFs) is improved to 240% and 2100%, respectively, while the strength is comparable to the rigid precursor. As compared with the traditional crushing, blending, and hot-pressing of rigid or soft materials to get the nonuniform materials, the strength and toughness of the RSBFs are improved to 168% and 255%, respectively. This approach holds significant promise for the fabrication of polymer thermosets with a unique combination of strength and toughness.


Asunto(s)
Polimerizacion , Resinas Sintéticas/química , Microesferas , Polímeros/química , Temperatura , Ensayo de Materiales , Propiedades de Superficie , Tamaño de la Partícula
6.
Biomaterials ; 307: 122536, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522327

RESUMEN

Antibacterial photodynamic therapy (aPDT) has emerged as a promising strategy for treating periodontitis. However, the weak binding of most photosensitizers to bacteria and the hypoxic environment of periodontal pockets severely hamper the therapeutic efficacy. Herein, two novel oxygen-independent photosensitizers are developed by introducing selenophene into viologens and modifying with hexane chains (HASeV) or quaternary ammonium chains (QASeV), which improve the adsorption to bacteria through anchoring to the negatively charged cell membrane. Notably, QASeV binds only to the bacterial surface of Porphyromonas gingivalis and Fusobacterium nucleatum due to electrostatic binding, but HASeV can insert into their membrane by strong hydrophobic interactions. Therefore, HASeV exhibits superior antimicrobial activity and more pronounced plaque biofilm disruption than QASeV when combined with light irradiation (MVL-210 photoreactor, 350-600 nm, 50 mW/cm2), and a better effect on reducing the diversity and restoring the structure of subgingival flora in periodontitis rat model was found through 16S rRNA gene sequencing analysis. The histological and Micro-CT analyses reveal that HASeV-based aPDT has a better therapeutic effect in reducing periodontal tissue inflammation and alveolar bone resorption. This work provides a new strategy for the development of viologen-based photosensitizers, which may be a favorable candidate for the aPDT against periodontitis.


Asunto(s)
Periodontitis , Fotoquimioterapia , Animales , Ratas , Fármacos Fotosensibilizantes/uso terapéutico , ARN Ribosómico 16S , Periodontitis/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Inflamación/tratamiento farmacológico , Bacterias , Porphyromonas gingivalis
7.
ACS Appl Mater Interfaces ; 16(3): 4035-4044, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38200632

RESUMEN

Flexible wearable sensors have demonstrated enormous potential in various fields such as human health monitoring, soft robotics, and motion detection. Among them, sensors based on ionogels have garnered significant attention due to their wide range of applications. However, the fabrication of ionogels with high sensitivity and stable autonomous adhesion remains a challenge, thereby limiting their potential applications. Herein, we present an advanced ionogel (PACG-MBAA) with exceptional performances based on multiple hydrogen bonds, which is fabricated through one-step radical polymerization of N-acryloylglycine (ACG) in 1-ethyl-3-methylimidazolium ethyl sulfate (EMIES) in the presence of N,N'-methylenebis(acrylamide) (MBAA). Compared with the ionogel (PAA-MBAA) formed by polymerization of acrylic acid (AA) in EMIES, the resulting ionogel exhibits tunable mechanical strength (35-130 kPa) and Young's modulus comparable to human skin (60-70 kPa) owing to the multiple hydrogen bonds formation. Importantly, they demonstrate stable autonomous adhesion to various substrates and good self-healing capabilities. Furthermore, the ionogel-based sensor shows high sensitivity (with a gauge factor up to 6.16 in the tensile range of 300-700%), enabling the detection of both gross and subtle movements in daily human activities. By integration of the International Morse code, the ionogel-based sensor enables the encryption, decryption, and transmission of information, thus expanding its application prospects.

8.
Environ Sci Pollut Res Int ; 31(2): 2960-2975, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38079047

RESUMEN

Due to the advancement of digital technology, the digital economy has developed rapidly, profoundly changing human production and lifestyles, thereby promoting the dual digital transformation of the energy supply and demand sides and having a profound impact on energy utilization efficiency. Based on measuring the total factor energy efficiency (TFEE) of 268 cities in China from 2011 to 2019, we analyze the total and indirect effects of the digital economy on TFEE using a mediated effects model and examine the effects of urban heterogeneity from the perspectives of geographical location, city size, and resource endowment. The results show that the digital economy has a significant positive contribution to TFEE. In addition, the digital economy can promote TFEE through industrial structure upgrading, technological innovation, and environmental regulation. The test results of the subsample show that there is significant heterogeneity in the impact and mechanism of action of the digital economy on TFEE in different geographical locations, city sizes, and resource endowments. By understanding how the digital economy impacts TFEE, policymakers can formulate effective policies to simultaneously accelerate digital economy development and improve TFEE.


Asunto(s)
Conservación de los Recursos Energéticos , Desarrollo Económico , China , Ciudades , Eficiencia
9.
Nat Commun ; 14(1): 7771, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012159

RESUMEN

Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.


Asunto(s)
Hidrogeles , Osteoartritis , Humanos , Hidrogeles/química , Liberación de Fármacos , Cartílago/fisiología
10.
ACS Macro Lett ; 12(10): 1409-1415, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37792461

RESUMEN

Dielectric polymers that exhibit high energy density Ue, low dielectric loss, and thermal resistance are ideal materials for next-generation electrical equipment. The most widely utilized approach to improving Ue involves augmenting the polarization through increasing the dielectric constant εr or the breakdown strength Eb. However, as a conflicting parameter, the dielectric loss also increases inevitably at the same time. In addition, due to the long-term work under a strong electric field or high potential, dielectric materials often produce electrical damage (electrical tree), which is one of the main factors affecting the reliability and service life of electrical equipment. To address these problems, we herein develop dynamic cross-linked polyethylene materials (PE-MA-Epo) by polyethylene-graft-maleic anhydride (PE-MA) and polar epoxy monomers, which showed high εr (>7), low dielectric loss (<0.02), high Ue (5.16 J/cm3 at 425 MV/m), and outstanding discharge efficiency (97%). The performances of the materials are adequate to rival biaxially oriented polypropylene (BOPP) films. Moreover, the excellent self-healing capability of PE-MA-Epo enables the total recovery of εr and tan δ after electrical tree healing. After two cycles of electrical breakdown healing, Eb remained at 80%, which improves the durability and reliability of dielectric polymers. Therefore, PE-MA-Epo shows great potential for applications in advanced electronic power devices.

11.
Biomater Sci ; 11(21): 7067-7076, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37724849

RESUMEN

Periodontal dressing is a surgical dressing applied to oral wounds after periodontal surgery. Currently, all commercially available setting periodontal dressings are stiff, uncomfortable, with poor aesthetics, and need to be removed at the patient's follow-up visit, which may cause secondary damage. A periodontal dressing with soft texture, biodegradable properties, and that could balance both comfort and aesthetics is urgently desired. Hence, non-setting and degradable dressings were developed using sodium carboxymethyl cellulose, Eudragit S 100 and povidone K30, which were compared with the commercial degradable dressing Reso-pac®. The mucosal adhesion of the dressings was evaluated by lap shear tests, which indicated adequate adhesion. The in vitro swelling rates of the dressings were approximately half that of Reso-pac®, which led to less saliva adsorption and better dimensional stability. The dressings also exhibited satisfactory biocompatibility according to the results of CCK-8, Live/Dead staining, hemolysis, and subcutaneous implantation assays. Moreover, the dressing promoted the healing of full-thickness mucosal wounds in the palatal gingivae of SD rats and contributed to better therapeutic effect than Reso-pac®. Considering the multiple advantages and the pure pharmaceutical excipient formula, we anticipate that this dressing could be a promising product and may enter clinical practice in the near future.

12.
Adv Mater ; 35(48): e2306882, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37639726

RESUMEN

Inspired by mechanically interlocking supramolecular materials, exploiting the size difference between the bulky solvent and the cross-linked network mesh, a molecular clogging (MC) effect is developed to effectively inhibit solvent migration in organogels. A bulky solvent (branched citrate ester, BCE) with a molecular size above 1.4 nm is designed and synthesized. Series of MC-Gels are prepared by in situ polymerization of crosslinked polyurea with BCE as the gel solvent. The MC-Gels are colorless, transparent, and highly homogeneous, show significantly improved stability than gels prepared with small molecule solvents. As solvent migration is strongly inhibited by molecular clogging, the solvent content of the gels can be precisely controlled, resulting in a series of MC-Gels with continuously adjustable mechanics. In particular, the modulus of MC-Gel can be regulated from 1.3 GPa to 30 kPa, with a variation of 43 000 times. The molecular clogging effect also provides MC-Gels with unique high damping (maximum damping factor of 1.9), impact resistant mechanics (high impact toughness up to 40.68 MJ m-3 ). By applying shatter protection to items including eggs and ceramic armor plates, the potential of MC-Gels as high strength, high damping soft materials for a wide range of applications is well demonstrated.

13.
Sci Adv ; 9(22): eadg4031, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267351

RESUMEN

Development of underwater adhesives with instant and robust adhesion to diverse substrates remains challenging. A strategy taking the structural advantage of phenylalanine derivative, N-acryloyl phenylalanine (APA), is proposed to facilely prepare a series of underwater polymeric glue-type adhesives (UPGAs) through one-pot radical polymerization with commonly used hydrophilic vinyl monomers. The adjacent phenyl and carboxyl groups in APA realize the synergy between interfacial interactions and cohesion strength, by which the UPGAs could achieve instant (~5 seconds) and robust wet tissue adhesion strength (173 kilopascal). The polymers with varied hydrophobicity and substitutional groups as well as carboxyl and phenyl groups in separated components are designed to investigate the underwater adhesion mechanism. The universality of APA for the construction of UPGAs is also verified by the copolymerization with different hydrophilic monomers, and the applications of the UPGAs have been validated in diverse hemorrhage models and distinct substrates. Our work may give a promising solution to design potent underwater adhesives.

14.
Macromol Rapid Commun ; 44(13): e2300034, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37154224

RESUMEN

Polymer alloys (PAs) are mixtures of two or more types of polymers to enhance the properties of polymeric materials. However, thermosets with crosslinked structures are immiscible and cannot be prepared PAs. Herein, two immiscible covalent adaptable networks containing phenoxy carbamate bonds are explored as the typical polymeric materials to prepare the hard-soft thermoset alloy (HSTA) by the interpenetrated dynamic crosslinked interface (IDCI) to enhance the toughness. Specifically, two types of polyurethane covalent adaptable networks with either high stiffness (thermoset) or extensibility (elastomer) are prepared, respectively. The granules of thermoset and elastomer are mixed and hot-pressed to prepare the HSTA. The HSTA shows improved mechanical properties with a toughness of 22.8 MJ m-3 which is 14 times higher than that of hard thermoset. In addition, the HSTA shows excellent impact-resistance property after 1000 punctures. Moreover, the obtained HSTA via addition of carbon nanotubes can significantly decrease the electric resistance over six orders of magnitudes as compared to the blending method, which is due to the distribution of the carbon nanotubes at the interfaces of the two networks.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/química , Polímeros/química , Elastómeros , Conductividad Eléctrica
15.
ACS Macro Lett ; 12(5): 543-548, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37039107

RESUMEN

Multicomponent polymerization (MCP) has the advantages of high efficiency, mild reaction conditions, and high yield and has been widely used to synthesize multifunctional polymers. In this report, we develop novel covalent adaptable networks (CANs) with dynamic thioaminal covalent bonds via a simple one-pot thiol-aldehyde-amine MCP. The dynamic behaviors of the thioaminal group are demonstrated. The obtained thioaminal CANs show the tensile strength of as high as 45 MPa via MCP of pentaerythritol tetra(3-mercaptopropionate), the mixture of formaldehyde and benzaldehyde, and 4,4'-methylenedianiline. Moreover, the CANs exhibit reprocessability, recyclability, and reconfigurable shape memory behaviors. Thus, the thiol-aldehyde-amine MCP represents a simple and efficient strategy for the preparation of versatile thioaminal CANs.

16.
Biomater Sci ; 11(10): 3683-3694, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37021981

RESUMEN

Development of polymeric hydrogels with multiple functions (adhesiveness, self-healability, anti-oxidation efficiency, etc.) through one-step green polymerization of naturally occurring small molecules in water is critical for various biomedical applications and clinical transformation. In this work, benefiting from the dynamic disulfide bond in α-lipoic acid (LA), we directly obtain an advanced hydrogel (poly(lipoic acid-co-sodium lipoate) (PLAS)) through heat and concentration-induced ring-opening polymerization of LA with the addition of NaHCO3 in an aqueous solution. The presence of COOH, COO- and disulfide bonds endows the resulting hydrogels with comprehensive mechanical properties, facile injectability, fast self-healability and adequate adhesiveness. Moreover, the PLAS hydrogels show promising antioxidative efficiency, inherited from naturally occurring LA, and can efficiently eliminate intracellular reactive oxygen species (ROS). We also verify the advantage of PLAS hydrogels in a rat spinal injury model. Through the regulation of ROS and in situ inflammation, our system can promote the recovery of spinal cord injury. Owing to the natural origin and inherent anti-oxidative capability of LA, and a green preparation method, our hydrogel should be beneficial for clinical transformation and may be a good candidate for various biomedical applications.


Asunto(s)
Traumatismos de la Médula Espinal , Ácido Tióctico , Ratas , Animales , Hidrogeles/química , Antioxidantes/farmacología , Antioxidantes/química , Polímeros/química , Especies Reactivas de Oxígeno , Cicatrización de Heridas , Ácido Tióctico/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Disulfuros
17.
Macromol Rapid Commun ; 44(13): e2300092, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029933

RESUMEN

Poly(amic acid) (PAA) materials as the precursor of polyimide generally show remarkably poor mechanical properties, thus limiting their application as the engineering plastics. In this study, it is demonstrated that the mechanical properties of PAA materials can be improved significantly for tens of folds with breaking strength >50 MPa, Young's modulus >400 MPa, and elongation at break >300% by incorporation of 20% (mol%) poly(propylene glycol) (PPO) soft segments. The optimization for suitable hard-soft composition with 20% PPO and the existence of various hydrogen bonds with different binding energies can dissipate energies efficiently, which simultaneously improve the material strength and toughness. In addition, PAA82 films exhibit excellent tolerance toward cyclic stretch, and have the capability to resist various harsh conditions including solar radiation testing (1 sun), heat (85 °C), alkalinity (pH 10), and acidity (pH 4) over one month. Noted that PAA82 films can be laminated with Kapton films, which show excellent resistance to ultrahigh (200 °C) and ultralow temperature (-196 °C). The laminated film also exhibits bulletproof property with a thickness of 6 mm. The strategy via modulation of hard-soft compositions and hydrogen bonds in PAA materials shows great potentials to improve the mechanical properties of polymeric materials.


Asunto(s)
Plásticos , Polímeros , Enlace de Hidrógeno , Polímeros/química , Temperatura , Calor
18.
Adv Mater ; 35(26): e2301551, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36940146

RESUMEN

The Hoffmeister effect of inorganic salts is verified as a promising way to toughen hydrogels, however, the high concentration of inorganic salts may be accompanied by poor biocompatibility. In this work, it is found that polyelectrolytes can obviously elevate the mechanical performances of hydrogels through the Hoffmeister effect. The introduction of anionic poly(sodium acrylate) into poly(vinyl alcohol) (PVA) hydrogel induces the aggregation and crystallization of the PVA to boost the mechanical properties of the resulting double-network hydrogel: elevation of 73, 64, 28, 135, and 19 times in the tensile strength, compressive strength, Young's modulus, toughness, and fracture energy compared with poly(acrylic acid), respectively. It is noteworthy that the mechanical performances of the hydrogels can be flexibly tuned by the variation of polyelectrolyte concentration, ionization degree, relative hydrophobicity of the ionic component, and polyelectrolyte type in a wide range. This strategy is verified to work for other Hoffmeister-effect-sensitive polymers and polyelectrolytes. Also, the introduction of urea bonds into the polyelectrolyte can further improve the mechanical properties and antiswelling capability of hydrogels. As a biomedical patch, the advanced hydrogel can efficiently inhibit hernia formation and promote the regeneration of soft tissues in an abdominal wall defect model.

19.
Mater Horiz ; 10(6): 2096-2108, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36939051

RESUMEN

Flexible biosensors made from conductive hydrogels have shown tremendous potential in health management and human-machine interfaces. Nevertheless, it remains challenging to fabricate conductive hydrogels with robust resilience and long-term stability. Herein, we report a nanocomposite conductive hydrogel prepared through one-pot radical polymerization of 3-acrylamidophenylboronic acid (APBA) and acrylamide (AM) in the presence of LAPONITE® XLG nanosheet (XLG) stabilized carbon nanotubes (CNTs). Owing to the existence of various non-covalent interactions within the network (B-N coordination, hydrogen bond, and polymer chain entanglement), the hydrogels feature splendid mechanical properties with a tensile strength of 252-323 kPa, fracture strain of 880-1200%, Young's modulus of 48-50 kPa and fracture energy of 911-1078 J m-2, and exhibit robust elasticity and fatigue resistance during 1000 consecutive tensile and compressive cycles. The hydrogels show remarkable sensing performances (gauge factor up to 9.43) and a broad sensing range of strain (1-300%) and pressure (1-80 kPa), enabling reliable and accurate monitoring of large and tiny motions in daily human life. Moreover, the conductive hydrogels could not only accelerate skin incision healing but also act as smart wearable sensors to monitor the skin wound healing process by detection of local temperature changes.


Asunto(s)
Fracturas Óseas , Nanotubos de Carbono , Humanos , Nanogeles , Elasticidad , Hidrogeles
20.
Bioact Mater ; 19: 703-716, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35633902

RESUMEN

Development of biocompatible hydrogel adhesives with robust tissue adhesion to realize instant hemorrhage control and injury sealing, especially for emergency rescue and tissue repair, is still challenging. Herein, we report a potent hydrogel adhesive by free radical polymerization of N-acryloyl aspartic acid (AASP) in a facile and straightforward way. Through delicate adjustment of steric hindrance, the synergistic effect between interface interactions and cohesion energy can be achieved in PAASP hydrogel verified by X-ray photoelectron spectroscopy (XPS) analysis and simulation calculation compared to poly (N-acryloyl glutamic acid) (PAGLU) and poly (N-acryloyl amidomalonic acid) (PAAMI) hydrogels. The adhesion strength of the PAASP hydrogel could reach 120 kPa to firmly seal the broken organs to withstand the external force with persistent stability under physiological conditions, and rapid hemostasis in different hemorrhage models on mice is achieved using PAASP hydrogel as physical barrier. Furthermore, the paper-based Fe3+ transfer printing method is applied to construct PAASP-based Janus hydrogel patch with both adhesive and non-adhesive surfaces, by which simultaneous wound healing and postoperative anti-adhesion can be realized in gastric perforation model on mice. This advanced hydrogel may show vast potential as bio-adhesives for emergency rescue and tissue/organ repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...