Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39062703

RESUMEN

The rice blight poses a significant threat to the rice industry, and the discovery of disease-resistant genes is a crucial strategy for its control. By exploring the rich genetic resources of Yuanjiang common wild rice (Oryza rufipogon) and analyzing their expression patterns, genetic resources can be provided for molecular rice breeding. The target genes' expression patterns, subcellular localization, and interaction networks were analyzed based on the annotated disease-resistant genes on the 9th and 10th chromosomes in the rice genome database using fluorescent quantitative PCR technology and bioinformatics tools. Thirty-three disease-resistant genes were identified from the database, including 20 on the 9th and 13 on the 10th. These genes were categorized into seven subfamilies of the NLR family, such as CNL and the G subfamily of the ABC family. Four genes were not expressed under the induction of the pathogen Y8, two genes were significantly down-regulated, and the majority were up-regulated. Notably, the expression levels of nine genes belonging to the ABCG, CN, and CNL classes were significantly up-regulated, yet the expression levels varied among roots, stems, and leaves; one was significantly expressed in the roots, one in the stems, and the remaining seven were primarily highly expressed in the leaves. Two interaction network diagrams were predicted based on the seven highly expressed genes in the leaves: complex networks regulated by CNL proteins and specific networks controlled by ABCG proteins. The disease-resistant genes on the 9th chromosome are actively expressed in response to the induction of rice blight, forming a critical gene pool for the resistance of Yuanjiang common wild rice (O. rufipogon) to rice blight. Meanwhile, the disease-resistant genes on the 10th chromosome not only participate in resisting the rice blight pathogen but may also be involved in the defense against other stem diseases.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Oryza/genética , Oryza/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Perfilación de la Expresión Génica/métodos , Cromosomas de las Plantas/genética , Transcriptoma
2.
Front Microbiol ; 14: 1264000, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876784

RESUMEN

Rice blast, caused by Magnaporthe oryzae, is a major threat to global rice production causing significant crop losses and impacting grain quality. The annual loss of rice production due to this disease ranges from 10% to 30%. The use of biologically controlled strains, instead of chemical pesticides, to control plant diseases has become a research hotspot. In this study, an antagonistic endophytic bacterial strain was isolated from the roots of Oryza officinalis using the traditional isolation and culture methods. A phylogenetic tree based on 16S RNA and whole-genome sequencing identified isolate G5 as a strain of Bacillus subtilis. This isolate displayed strong antagonistic effects against different physiological strains of M. oryzae. After co-culture in LB medium for 7 days, the inhibition rates of the mycelial growth of four strains of M. oryzae, ZB15, WH97, Guy11, and T-39800E were 98.07 ± 0.0034%, 98.59 ± 0.0051%, 99.16 ± 0.0012%, and 98.69 ± 0.0065%, respectively. Isolate G5 significantly inhibited the formation of conidia of M. oryzae, with an inhibition rate of 97% at an OD600 of 2. Isolate G5 was able to provide 66.81% protection against rice blast under potted conditions. Whole-genome sequencing revealed that the genome size of isolate G5 was 4,065,878 bp, including 4,182 coding genes. Using the anti-SMASH software, 14 secondary metabolite synthesis gene clusters were predicted to encode antifungal substances, such as fengycin, surfactin, and bacilysin. The G5 isolate also contained genes related to plant growth promotion. These findings provide a theoretical basis for expounding the biocontrol mechanisms of this strain and suggest further development of biogenic agents that could effectively inhibit rice blast pathogen growth and reduce crop damage, while being environmentally friendly, conducive to ecological development, and a sustainable alternative to chemical pesticides. This study also enriches the relevant research on endophytes of wild rice, which proves that wild rice is a valuable microbial resource bank.

3.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2566-2578, 2023 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-37584115

RESUMEN

Gene editing technology is a genetic operation technology that can modify the DNA sequence at the genomic level. The precision gene editing technology based on CRISPR/Cas9 system is a gene editing technology that is easy to operate and widely used. Unlike the traditional CRISPR/Cas9 system, the precision gene editing technology can perform site-directed mutation of genes without DNA template. This review summarizes the recent development of precision gene editing technology based on CRISPR/Cas9, and prospects the challenges and opportunities of this technology.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Mutación , Genoma
4.
Front Plant Sci ; 13: 1037901, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507384

RESUMEN

Bacterial blight (BB) induced by Xanthomonas oryzae pv. oryzae (Xoo) is a devastating bacterial disease in rice. The use of disease resistance (R) genes is the most efficient method to control BB. Members of the nucleotide-binding domain and leucine-rich repeat containing protein (NLR) family have significant roles in plant defense. In this study, Xa47, a new bacterial blight R gene encoding a typical NLR, was isolated from G252 rice material, and XA47 was localized in the nucleus and cytoplasm. Among 180 rice materials tested, Xa47 was discovered in certain BB-resistant materials. Compared with the wild-type G252, the knockout mutants of Xa47 was more susceptible to Xoo. By contrast, overexpression of Xa47 in the susceptible rice material JG30 increased BB resistance. The findings indicate that Xa47 positively regulates the Xoo stress response. Consequently, Xa47 may have application potential in the genetic improvement of plant disease resistance. The molecular mechanism of Xa47 regulation merits additional examination.

5.
Life (Basel) ; 12(6)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35743858

RESUMEN

Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is among the oldest known bacterial diseases found for rice in Asia. It is the most serious bacterial disease in many rice growing regions of the world. A total of 47 resistance (R) genes (Xa1 to Xa47) have been identified. Nonetheless, these R genes could possibly be defeated to lose their qualitative nature and express intermediate phenotypes. The identification of sources of novel genetic loci regulating host plant resistance is crucial to develop an efficient control strategy. Wild ancestors of cultivated rice are a natural genetic resource contain a large number of excellent genes. Medicinal wild rice (Oryza officinalis) belongs to the CC genome and is a well-known wild rice in south China. In this study, O. officinalis was crossed with cultivated rice HY-8 and their hybrids were screened for BB resistance genes deployed through natural selection in wild rice germplasm. The molecular markers linked to R genes for BB were used to screen the genomic regions in wild parents and their recombinants. The gene coding and promoter regions of major R genes were inconsistently found in O. officinalis and its progenies. Oryza officinalis showed resistance to all thirty inoculated Xoo strains with non-availability of various known R genes. The results indicated the presence of novel genomic regions for BB resistance in O. officinalis. The present study not only provides a reference to investigate medicinal rice for R gene(s) identification against BB but also identified it as a new breeding material for BB resistance.

6.
Plant Dis ; 105(12): 4106-4112, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34261357

RESUMEN

Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae is a common, widespread, and highly devastating disease that affects rice yield. Breeding resistant cultivars is considered the most effective measure for controlling this disease. The introgression line G252 derived from Yuanjiang common wild rice (Oryza rufipogon) was highly resistant to all tested strains, including C5, C9, PXO99, PB, T7147Y8, Hzhj19, YM1, YM187, YJdp-2, and YJws-2. To identify the BB resistance gene(s) of G252, we developed an F2 population from the cross between G252 and 02428. A linkage analysis was performed for the phenotype and genotype of the population. A segregation ratio of 3:1 was observed between the resistant and susceptible individuals in the F2 progeny, indicating a dominant resistance gene, Xa47(t), in G252. The resistance gene was mapped within an approximately 26.24-kb physical region on chromosome 11 between two InDel markers, R13I14 and 13rbq-71. Moreover, one InDel marker, Hxjy-1, co-segregated with Xa47(t). Three genes were predicted within the target region, including a promising candidate gene encoding a nucleotide-binding domain and leucine-rich repeat (NLR) protein (LOC_Os11g46200) by combining the structure and expression analysis. Physical mapping data suggested that Xa47(t) is a new broad-spectrum BB resistance gene without identified allelic genes.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genes de Plantas , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xanthomonas/patogenicidad
7.
Plant J ; 108(2): 330-346, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273211

RESUMEN

Plant aquaporins are a recently noted biological resource with a great potential to improve crop growth and defense traits. Here, we report the functional modulation of the rice (Oryza sativa) aquaporin OsPIP1;3 to enhance rice photosynthesis and grain production and to control bacterial blight and leaf streak, the most devastating worldwide bacterial diseases in the crop. We characterize OsPIP1;3 as a physiologically relevant CO2 -transporting facilitator, which supports 30% of rice photosynthesis on average. This role is nullified by interaction of OsPIP1;3 with the bacterial protein Hpa1, an essential component of the Type III translocon that supports translocation of the bacterial Type III effectors PthXo1 and TALi into rice cells to induce leaf blight and streak, respectively. Hpa1 binding shifts OsPIP1;3 from CO2 transport to effector translocation, aggravates bacterial virulence, and blocks rice photosynthesis. On the contrary, the external application of isolated Hpa1 to rice plants effectively prevents OsPIP1;3 from interaction with Hpa1 secreted by the bacteria that are infecting the plants. Blockage of the OsPIP1;3-Hpa1 interaction reverts OsPIP1;3 from effector translocation to CO2 transport, abrogates bacterial virulence, and meanwhile induces defense responses in rice. These beneficial effects can combine to enhance photosynthesis by 29-30%, reduce bacterial disease by 58-75%, and increase grain yield by 11-34% in different rice varieties investigated in small-scale field trials conducted during the past years. Our results suggest that crop productivity and immunity can be coordinated by modulating the physiological and pathological functions of a single aquaporin to break the growth-defense tradeoff barrier.


Asunto(s)
Oryza/fisiología , Fotosíntesis/fisiología , Proteínas de Plantas/metabolismo , Xanthomonas/patogenicidad , Proteínas Bacterianas/metabolismo , Transporte Biológico , Dióxido de Carbono/metabolismo , China , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/fisiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Virulencia , Xanthomonas/metabolismo
8.
BMC Plant Biol ; 19(1): 30, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30658570

RESUMEN

BACKGROUND: Among various pests, the brown planthopper (BPH) that damages rice is the major destructive pests. Understanding resistance mechanisms is a critical step toward effective control of BPH. This study investigates the proteomics of BPH interactions with three rice cultivars: the first resistant (PR) to BPH, the second susceptible (PS), and the third hybrid (HR) between the two, in order to understand mechanisms of BPH resistance in rice. RESULTS: Over 4900 proteins were identified from these three rice cultivars using iTRAQ proteomics study. A total of 414, 425 and 470 differentially expressed proteins (DEPs) were detected from PR, PS and HR, respectively, after BPH infestation. Identified DEPs are mainly enriched in categories related with biosynthesis of secondary metabolites, carbon metabolism, and glyoxylate and dicarboxylate metabolism. A two-component response regulator protein (ORR22) may participate in the early signal transduction after BPH infestation. In the case of the resistant rice cultivar (PR), 6 DEPs, i.e. two lipoxygenases (LOXs), a lipase, two dirigent proteins (DIRs) and an Ent-cassa-12,15-diene synthase (OsDTC1) are related to inheritable BPH resistance. A heat shock protein (HSP20) may take part in the physiological response to BPH infestation, making it a potential target for marker-assisted selection (MAS) of rice. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed eight genes encoding various metabolic proteins involved in BPH resistance. During grain development the expressions of these genes varied at the transcriptional and translational levels. CONCLUSIONS: This study provides comprehensive details of key proteins under compatible and incompatible interactions during BPH infestation, which will be useful for further investigation of the molecular basis of rice resistance to BPH and for breeding BPH-resistant rice cultivars.


Asunto(s)
Hemípteros/patogenicidad , Oryza/metabolismo , Oryza/parasitología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/metabolismo , Proteómica/métodos , Animales
9.
Plant Genome ; 11(3)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30512031

RESUMEN

Nees & Arn. ex Watt, a perennial wild rice species with a GG genome, preserves many important genes for cultivated rice ( L.) improvement. At present, however, no genetic resource is available for studying . Here, we report 91,562 high-quality transcripts of assembled de novo. Moreover, comparative transcriptome analysis revealed that 1311 single-copy orthologous pairs shared by and (Zoll. & Moritzi) Baill. that may have undergone adaptive evolution. We performed an analysis of the genes potentially involved in plant-pathogen interactions to explore the molecular basis of disease resistance, and isolated the full-length cDNAs of () and () orthologs from . The overexpression of in Nipponbare and functional characterization showed enhanced the resistance of transgenic Nipponbare to rice blast resulting from the presence of the gene. , an alternatively spliced transcript of the blast resistance gene in encodes a 1024-amino acid polypeptide with a C-terminal thioredoxin domain. This study provides an important resource for functional and evolutionary studies of the genus .


Asunto(s)
Genes de Plantas , Oryza/genética , Adaptación Biológica , ADN de Plantas , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Biblioteca de Genes , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Especificidad de la Especie
10.
PLoS One ; 12(11): e0188742, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29190793

RESUMEN

Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, p<0.01) in the O. officinalis transcriptome under Xoo strains PXO99 and C5 stress 48 h, suggesting these genes might play important role in PXO99 and C5 stress responses in O. officinalis. QRT-PCR analysis and confirmation of eight OoWRKYs expression patterns revealed that they responded strongly to PXO99 and C5 stress 24 h, 48 h, and 72 h, and the trends of these genes displaying marked changes were consistent with the 48 h RNA-sequencing data, demonstrated these genes played important roles in response to biotic stress and might even involved in the bacterial blight resistance. Tissue expression profiles of eight OoWRKY genes revealed that they were highly expressed in root, stem, leaf, and flower, especially in leaf (except OoWRKY71), suggesting these genes might be also important for plant growth and organ development. In this study, we analyzed the WRKY family of transcription factors in O.officinalis. Insight was gained into the classification, evolution, and function of the OoWRKY genes, revealing the putative roles of eight significantly different expression OoWRKYs in Xoo strains PXO99 and C5 stress responses in O.officinalis. This study provided a better understanding of the evolution and functions of O. officinalis WRKY genes, and suggested that manipulating eight significantly different expression OoWRKYs would enhance resistance to bacterial blight.


Asunto(s)
Genes de Plantas , Familia de Multigenes , Oryza/genética , Transcriptoma , Xanthomonas/patogenicidad , Oryza/clasificación , Oryza/microbiología , Filogenia
11.
Sci Rep ; 7(1): 5089, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698641

RESUMEN

Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo) cause bacterial leaf streak (BLS) and bacterial leaf blight (BLB) in rice, respectively. Unlike Xoo, endogenous avirulence-resistance (avr-R) gene interactions have not been identified in the Xoc-rice pathosystem; however, both pathogens possess transcription activator-like effectors (TALEs) that are known to modulate R or S genes in rice. The transfer of individual tal genes from Xoc RS105 (hypervirulent) into Xoc YNB0-17 (hypovirulent) led to the identification of tal7, which suppressed avrXa7-Xa7 mediated defense in rice containing an Xa7 R gene. Mobility shift and microscale thermophoresis assays showed that Tal7 bound two EBE sites in the promoters of two rice genes, Os09g29100 and Os12g42970, which encode predicted Cyclin-D4-1 and GATA zinc finger family protein, respectively. Assays using designer TALEs and a TALE-free strain of Xoo revealed that Os09g29100 was the biologically relevant target of Tal7. Tal7 activates the expression of rice gene Os09g29100 that suppresses avrXa7-Xa7 mediated defense in Rice. TALEN editing of the Tal7-binding site in the Os09g29100 gene promoter further enhanced resistance to the pathogen Xoc RS105. The suppression of effector-trigger immunity (ETI) is a phenomenon that may contribute to the scarcity of BLS resistant cultivars.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Oryza/genética , Oryza/inmunología , Inmunidad de la Planta/genética , Efectores Tipo Activadores de la Transcripción/metabolismo , Xanthomonas/metabolismo , Secuencia de Bases , Sitios de Unión , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica
12.
Sci Rep ; 6: 38215, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27905546

RESUMEN

Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the devastating diseases of rice. It is well established that the wild rice Oryza meyeriana is immune to BB. In this study, the transcriptomic analysis was carried out by RNA sequencing of O. meyeriana leaves, inoculated with Xoo to understand the transcriptional responses and interaction between the host and pathogen. Totally, 57,313 unitranscripts were de novo assembled from 58.7 Gb clean reads and 14,143 unitranscripts were identified after Xoo inoculation. The significant metabolic pathways related to the disease resistance enriched by KEGG, were revealed to plant-pathogen interaction, phytohormone signaling, ubiquitin mediated proteolysis, and phenylpropanoid biosynthesis. Further, many disease resistance genes were also identified to be differentially expressed in response to Xoo infection. Conclusively, the present study indicated that the induced innate immunity comprise the basal defence frontier of O. meyeriana against Xoo infection. And then, the resistance genes are activated. Simultaneously, the other signaling transduction pathways like phytohormones and ubiquitin mediated proteolysis may contribute to the disease defence through modulation of the disease-related genes or pathways. This could be an useful information for further investigating the molecular mechanism associated with disease resistance in O. meyeriana.


Asunto(s)
Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Oryza , Enfermedades de las Plantas , Transcriptoma , Xanthomonas/metabolismo , Oryza/genética , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
13.
Int J Mol Sci ; 16(12): 29482-95, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26690414

RESUMEN

Oryza officinalis Wall ex Watt is one of the most important wild relatives of cultivated rice and exhibits high resistance to many diseases. It has been used as a source of genes for introgression into cultivated rice. However, there are limited genomic resources and little genetic information publicly reported for this species. To better understand the pathways and factors involved in disease resistance and accelerating the process of rice breeding, we carried out a de novo transcriptome sequencing of O. officinalis. In this research, 137,229 contigs were obtained ranging from 200 to 19,214 bp with an N50 of 2331 bp through de novo assembly of leaves, stems and roots in O. officinalis using an Illumina HiSeq 2000 platform. Based on sequence similarity searches against a non-redundant protein database, a total of 88,249 contigs were annotated with gene descriptions and 75,589 transcripts were further assigned to GO terms. Candidate genes for plant-pathogen interaction and plant hormones regulation pathways involved in disease-resistance were identified. Further analyses of gene expression profiles showed that the majority of genes related to disease resistance were all expressed in the three tissues. In addition, there are two kinds of rice bacterial blight-resistant genes in O. officinalis, including two Xa1 genes and three Xa26 genes. All 2 Xa1 genes showed the highest expression level in stem, whereas one of Xa26 was expressed dominantly in leaf and other 2 Xa26 genes displayed low expression level in all three tissues. This transcriptomic database provides an opportunity for identifying the genes involved in disease-resistance and will provide a basis for studying functional genomics of O. officinalis and genetic improvement of cultivated rice in the future.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza/metabolismo , Enfermedades de las Plantas/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Redes y Vías Metabólicas , Oryza/genética , Filogenia , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
PLoS One ; 10(12): e0144518, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26640944

RESUMEN

Oryza meyeriana (O. meyeriana), with a GG genome type (2n = 24), accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93-11) genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26) differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease resistance in O. meyeriana.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Tallos de la Planta/genética , Secuencia de Bases , ADN de Plantas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología , Análisis de Secuencia de ADN
15.
Proteome Sci ; 12(1): 51, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25505850

RESUMEN

BACKGROUND: The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. RESULTS: The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. CONCLUSION: This was the first report on proteomic analysis of the three wild rice species. Overall results suggest that there were many new types of glutelin subunits and precursor in the three wild rice species. Hence, wild rice species are important genetic resources for improving nutritional quality to rice.

16.
J Econ Entomol ; 106(2): 1011-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23786094

RESUMEN

Chemical characteristics of normal, woolly apple aphid-damaged, and mechanically damaged twigs of six apple cultivars: Red Fuji, Golden Delicious, Qinguan, Zhaojin 108, Starkrimson, and Red General, were examined in autumn wood to provide abetter understanding of factors related to cultivar resistance to the woolly apple aphid, Eriosoma lanigerum (Hausmann). Chemical measures examined included soluble sugars, soluble proteins and amino acids, total phenolics, and polyphenol oxidase (that enhances the resistance of plants to insects) and superoxide dismutase, peroxidase, and catalase (that degrade waste products in plants). Soluble sugar, protein, and amino acid contents in normal (undamaged) twigs of Red Fuji, aphid-susceptible cultivar, were higher than in mechanically damaged and aphid-damaged twigs. Total phenolic compounds, an important group of defensive compounds against aphids, increased by 30.5 and 6.0% in mechanically damaged twigs of Qinguan and Zhaojin 108, respectively, and decreased by 21.7 and 16.1% in aphid-damaged twigs of Red Fuji and Red General, respectively. Compared with normal twigs, in aphid-damaged twigs, superoxide dismutase, peroxidase, and polyphenol activity all decreased in Red Fuji. The resistance of some apple cultivars to woolly apple aphid during the growth of autumn shoots was related to several of the physiological indices we monitored. The thin epidermis of callus tissue over healed wounds showed increased susceptibility to the attack by woolly apple aphid. Apple cultivar Qinguan with the highest level of resistance to woolly apple aphid in autumn had increased in amino acid, total phenolic compound levels, and enzyme activity after aphid feeding.


Asunto(s)
Áfidos/fisiología , Malus/metabolismo , Animales , China , Conducta Alimentaria , Malus/enzimología , Malus/crecimiento & desarrollo , Brotes de la Planta/enzimología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Estaciones del Año
18.
Mol Biol Rep ; 37(2): 875-92, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19672692

RESUMEN

In order to understand the mechanism of the strong resistance of Oryza granulata to Xanthomonas oryzae pv oryzae (Xoo), cDNA microarrays containing 2,436 cDNA clones of Oryza granulata derived from Suppression subtractive library and cDNA library were constructed and genome expression patterns after inoculating Xoo were investigated. Three hundred and 83 clones were up-regulated, 836 clones were down-regulated after pathogen infection. Approximately 800 clones were sequenced and BLAST search were carried out. There are no homologous sequences for 35 clones of them. The functions of the homologous sequences for most clones are unknown. The known functions of the homologous sequences involved in photosynthesis, respiration, material transport, signal transduction, pathogenesis-related proteins, transcription factors, the active oxygen scavenging system and so on. The putative functions of them in responding to Xoo were discussed.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Oryza/genética , Enfermedades de las Plantas/genética , Xanthomonas/patogenicidad , Secuencia de Aminoácidos , Perfilación de la Expresión Génica , Biblioteca Genómica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/inmunología , Filogenia , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Homología de Secuencia de Aminoácido , Xanthomonas/inmunología
19.
Phytopathology ; 98(7): 792-802, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18943255

RESUMEN

Harpins of phytopathogenic bacteria stimulate defense and plant growth in many types of plants, conferring disease resistance and enhanced yield. In a previous study, we characterized nine fragments of the harpin protein HpaG(Xooc) from Xanthomonas oryzae pv. oryzicola for plant defense elicitation and plant growth stimulation activity relative to the intact protein. In plants grown under controlled conditions, the fragment HpaG10-42 was more active in both regards than HpaG(Xooc). Here, we demonstrate that the activity of HpaG10-42 in rice under field conditions significantly exceeds that of HpaG(Xooc), stimulating resistance to three important diseases and increasing grain yield. We carried out tests in 672 experimental plots with nine cultivars of rice planted at three locations. Application protocols were optimized by testing variations in application rate, frequency, and timing with respect to rice growth stage. Of the concentrations (24, 24, 12, and 6 microg/ml), and number and timing of applications (at one to four different stages of growth) tested, HpaG10-42 at 6 microg/ml applied to plants once at nursery seedling stage and three times in the field was most effective. Bacterial blight, rice blast, and sheath blight were reduced 61.6 and 56.4, 93.6 and 76.0, and 93.2 and 55.0% in indica and japonica cultivars, respectively, relative to controls. Grain yields were 22 to 27% greater. These results are similar to results obtained with typical local management practices, including use of chemicals, to decrease disease severities and increase yield in rice. Our results demonstrate that the HpaG10-42 protein fragment can be used effectively to control diseases and increase yield of this staple food crop.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/farmacología , Oryza/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Xanthomonas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , China , Geografía , Inmunidad Innata/efectos de los fármacos , Oryza/crecimiento & desarrollo , Oryza/microbiología
20.
Yi Chuan ; 30(6): 776-80, 2008 Jun.
Artículo en Chino | MEDLINE | ID: mdl-18550503

RESUMEN

The cDNA library of Yuanjiang Oryza rifupongon leaf was constructed by using SMART technology. The titers of the non-amplified library and the amplified library were 1.1 x 106 pfu/mL and 3.98 x 107 pfu/mL, respectively. The recombination rate was more than 91%. The DNA sequence length of the most cDNAs in the library was between 500-2 000 bp. Some cDNAs chosen by random were sequenced. After BLAST analysis of some cDNAs, their possible function were predicted. It is found that these cDNAs show 98% similarity to Oryza sativa japonica in the NCBI database. These provided a base for further study on the structure and function of these cDNAs and evolutionary process of Yuanjiang Oryza rifupongon.


Asunto(s)
Biblioteca de Genes , Oryza/genética , Hojas de la Planta/genética , China , Bases de Datos Genéticas , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...