Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt B): 303-311, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146818

RESUMEN

HYPOTHESIS: Perfluorocarbon is commonly used as a coolant, chemical reaction carrier solvent, medical anti-hypoxic agents and blood substitutes. The realization of non-contact complex manipulation of perfluorocarbon liquids is urgently needed in human life and industrial production. However, most liquid-repellent interfaces are ineffective for the transport of ultra-low surface tension perfluorocarbon liquids, and struggle to maintain good durability due to unstable air or oil cushions in the surface. Therefore, preparing surfaces for stable non-contact complex manipulation of ultra-low surface tension droplets remains a challenge. EXPERIMENTS: In this paper, a novel solution, a photothermal responsive droplet manipulation surface based on polydimethylsiloxane brushes, has been reported. On this surface, droplets with different surface tensions (as low as 10 mN/m) can be efficiently manipulated through induced near-infrared light. Notably, this surface maintains its effectiveness after exposure to extreme anthropogenic conditions. FINDINGS: The interface effect between perfluorocarbon droplets and polydimethylsiloxane brushes by near-infrared light-induced was investigated in detail. In addition, ultra-low surface tension droplets demonstrate the ability to transport solid particles. The conductive droplets exhibit sophisticated manipulation realizing the controlled switching of smart circuits. This research opens up new possibilities for advancing the capabilities and adaptability of ultralow surface tension droplets in a range of applications.

2.
Small ; : e2400466, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38676346

RESUMEN

The efficient removal of droplets on solid surfaces holds significant importance in the field of fog collection, condensation heat transfer, and so on. However, on current typical surfaces, droplets are characterized by a passive and single removal mode, contingent on the traction force (e.g., capillary force, Laplace pressure, etc.) generated by the surface's physics and chemistry design, posing challenges for enhancing the efficiency of droplet removal. In this paper, an effective active strategy based on different removal modes is demonstrated on magnetic responsive polydimethylsiloxane (PDMS) superhydrophobic microplates (RM-MPSM). By regulating the parameters of microplates and droplet volume, different effective departure modes (top jumping and side departure) can be induced to facilitate the removal of droplets. Moreover, the removal volume of droplets through the side departure mode exhibits a significant reduction compared to that observed in the top jumping mode. The exceptional removal ability of RM-MPSM demonstrates adaptability to diverse functional applications: efficient fog collection, removal of condensation droplets and micro-particles. The efficient modes of droplet removal demonstrated in this work hold significant implications for broadening its application in many fields, such as droplet collection, heat transfer, and anti-icing.

3.
J Colloid Interface Sci ; 662: 563-571, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367574

RESUMEN

Efficient removal of droplets from solid surfaces is significant in various fields, including fog collection and condensation heat transfer. However, droplets removal on common surfaces with static structures often occurs passively, which limits the possibility of increasing removal efficiency and lacks intelligent controllability. In this paper, an active strategy based on extrusion ejection is proposed and demonstrated on the magnetic responsive polydimethylsiloxane (PDMS) superhydrophobic microplates (MPSM). The MPSM can reversibly transit between the upright and tilted state as the external magnetic field is alternately applied and removed. Under the magnetic field, the direction and trajectories of droplets departure can be intelligently controlled, demonstrating excellent controllability. More importantly, compared with the static structure where the droplet must reach a certain size before departure, droplets can be ejected at smaller sizes as the MPSM is tilted. These advantages are of great significance in many fields, such as a highly efficient fog harvesting system. This strategy of extrusion ejection based on dynamic surface structure control reported in this work may provide fresh ideas for efficient droplet manipulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...