Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256722

RESUMEN

The rise in antibiotic resistance (AR) poses an imminent threat to human health. Nanotechnology, together with mechanisms such as quorum sensing (QS), which relies on communication between bacterial cells, may decrease the selective pressure for AR. Thus, this study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) synthesized at room temperature (Rt) and 80 °C using Embelia ruminata leaf, stem-bark, and fruit extracts as antibacterial and anti-QS agents. The phytosynthesized AgNPs solutions were subjected to various characterization assays and assessed for their antibacterial activities. Quantitative QS assays were performed using Chromobacterium subtsugae CV017 and Chromobacterium violaceum ATCC 12472. Synthesized AgNPs were spherical-to-near-spherical in shape, poly-dispersed, and crystalline, with a size range of 21.06-32.15 nm. Fruit AgNPs showed stronger antibacterial activity than AgNPs from other plant organs against selected bacterial strains. In the QS assays, fruit 80 °C AgNPs demonstrated the most significant violacein inhibition in an assay performed using the short-chain acyl homoserine lactone CV017 biosensor, while the leaf and fruit Rt AgNPs demonstrated the most violacein inhibition in an assay performed using the long-chain acyl homoserine lactone ATCC 12472 biosensor. The investigations carried out in this study lay the groundwork for future innovative research into antibacterial and anti-QS strategies using E. ruminata.

2.
Viruses ; 15(8)2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37632036

RESUMEN

Avian influenza viruses (AIV) are a continuous cause of concern due to their pandemic potential and devasting effects on poultry, birds, and human health. The low pathogenic avian influenza virus has the potential to evolve into a highly pathogenic avian influenza virus, resulting in its rapid spread and significant outbreaks in poultry. Over the years, a wide array of traditional and novel strategies has been implemented to prevent the transmission of AIV in poultry. Mass vaccination is still an economical and effective approach to establish immune protection against clinical virus infection. At present, some AIV vaccines have been licensed for large-scale production and use in the poultry industry; however, other new types of AIV vaccines are currently under research and development. In this review, we assess the recent progress surrounding the various types of AIV vaccines, which are based on the classical and next-generation platforms. Additionally, the delivery systems for nucleic acid vaccines are discussed, since these vaccines have attracted significant attention following their significant role in the fight against COVID-19. We also provide a general introduction to the dendritic targeting strategy, which can be used to enhance the immune efficiency of AIV vaccines. This review may be beneficial for the avian influenza research community, providing ideas for the design and development of new AIV vaccines.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Aviar , Vacunas , Animales , Humanos , Gripe Aviar/prevención & control , Pandemias/prevención & control , Brotes de Enfermedades
3.
Sci Rep ; 12(1): 12122, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840654

RESUMEN

Dendritic cells (DCs) are the antigen-presenting cells that initiate and direct adaptive immune responses, and thus are critically important in vaccine design. Although DC-targeting vaccines have attracted attention, relevant studies on chicken are rare. A high diversity T7 phage display nanobody library was constructed for bio-panning of intact chicken bone marrow DCs to find DC-specific binding nanobodies. After three rounds of screening, 46 unique sequence phage clones were identified from 125 randomly selected phage clones. Several DC-binding phage clones were selected using the specificity assay. Phage-54, -74, -16 and -121 bound not only with chicken DCs, but also with duck and goose DCs. In vitro, confocal microscopy observation demonstrated that phage-54 and phage-74 efficiently adsorbed onto DCs within 15 min compared to T7-wt. The pull-down assay, however, did not detect any of the previously reported proteins for chicken DCs that could have interacted with the nanobodies displayed on phage-54 and phage-74. Nonetheless, Specified pathogen-free chickens immunized with phage-54 and phage-74 displayed higher levels of anti-p10 antibody than the T7-wt, indicating enhanced antibody production by nanobody mediated-DC targeting. Therefore, this study identified two avian (chicken, duck and goose) DC-specific binding nanobodies, which may be used for the development of DC-targeting vaccines.


Asunto(s)
Bacteriófagos , Anticuerpos de Dominio Único , Animales , Bacteriófago T7/genética , Bacteriófagos/genética , Pollos , Células Dendríticas , Biblioteca de Péptidos
4.
Front Immunol ; 13: 1063129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591272

RESUMEN

Introduction: There is a growing demand for effective technologies for the delivery of antigen to antigen-presenting cells (APCs) and their immune-activation for the success of DNA vaccines. Therefore, dendritic cell (DC)-targeting T7 phages were used as a vehicle to deliver DNA vaccine. Methods: In this study, a eukaryotic expression plasmid pEGFP-C1-HA2-AS containing the HA2 gene derived from the avian H5N1 virus and an anchor sequence (AS) gene required for the T7 phage packaging process was developed. To verify the feasibility of phage delivery, the plasmid encapsulated in DC-targeting phage capsid through the recognition of AS was evaluated both in vitro and in vivo. The pEGFP-C1-HA2-AS plasmid could evade digestion by DNase I by becoming encapsulated into the phage particles and efficiently expressed the HA2 antigen in DCs with the benefit of DC-targeting phages. Results: For chickens immunized with the DC-targeting phage 74 delivered DNA vaccine, the levels of IgY and IgA antibodies, the concentration of IFN-γ and IL-12 cytokines in serum, the proliferation of lymphocytes, and the percentage of CD4+/CD8+ T lymphocytes isolated from peripheral blood were significantly higher than chickens which were immunized with DNA vaccine that was delivered by non-DC-targeting phage or placebo (p<0.05). Phage 74 delivered one-fiftieth the amount of pEGFP-C1-HA2-AS plasmid compared to Lipofectin, however, a comparable humoral and cellular immune response was achieved. Although, the HA2 DNA vaccine delivered by the DC-targeting phage induced enhanced immune responses, the protection rate of virus challenge was not evaluated. Conclusion: This study provides a strategy for development of a novel avian influenza DNA vaccine and demonstrates the potential of DC-targeting phage as a DNA vaccine delivery vehicle.


Asunto(s)
Bacteriófagos , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Vacunas de ADN , Animales , Pollos , Gripe Aviar/prevención & control , Bacteriófago T7 , Células Dendríticas
5.
Front Microbiol ; 12: 705310, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408735

RESUMEN

Bacteriophage T7 gene 17.5 coding for the only known holin is one of the components of its lysis system, but the holin activity in T7 is more complex than a single gene, and evidence points to the existence of additional T7 genes with holin activity. In this study, a T7 phage with a gene 17.5 deletion (T7-△holin) was rescued and its biological characteristics and effect on cell lysis were determined. Furthermore, the genomic evolution of mutant phage T7-△holin during serial passage was assessed by whole-genome sequencing analysis. It was observed that deletion of gene 17.5 from phage T7 delays lysis time and enlarges the phage burst size; however, this biological characteristic recovered to normal lysis levels during serial passage. Scanning electron microscopy showed that the two opposite ends of E. coli BL21 cells swell post-T7-△holin infection rather than drilling holes on cell membrane when compared with T7 wild-type infection. No visible progeny phage particle accumulation was observed inside the E. coli BL21 cells by transmission electron microscopy. Following serial passage of T7-△holin from the 1st to 20th generations, the mRNA levels of gene 3.5 and gene 19.5 were upregulated and several mutation sites were discovered, especially two missense mutations in gene 19.5, which indicate a potential contribution to the evolution of the T7-△holin. Although the burst size of T7-△holin increased, high titer cultivation of T7-△holin was not achieved by optimizing the culture process. Accordingly, these results suggest that gene 19.5 is a potential lysis-related component that needs to be studied further and that the T7-△holin strain with its gene 17.5 deletion is not adequate to establish the high-titer phage cultivation process.

6.
BMC Infect Dis ; 21(1): 16, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407206

RESUMEN

BACKGROUND: Epidemiological data of cephalosporin-resistant Enterobacterales in Sub-Saharan Africa is still restricted, and in particular in Mozambique. The aim of this study was to detect and characterize extended-spectrum ß-lactamase (ESBL) - and plasmid-mediated AmpC (pAmpC)-producing clinical strains of Escherichia coli at Maputo Central Hospital (MCH), a 1000-bed reference hospital in Maputo, Mozambique. METHODS: A total of 230 clinical isolates of E. coli from urine (n = 199) and blood cultures (n = 31) were collected at MCH during August-November 2015. Antimicrobial susceptibility testing was performed by the disc diffusion method and interpreted according to EUCAST guidelines. Isolates with reduced susceptibility to 3rd generation cephalosporins were examined further; phenotypically for an ESBL-/AmpC-phenotype by combined disc methods and genetically for ESBL- and pAmpC-encoding genes by PCR and partial amplicon sequencing as well as genetic relatedness by ERIC-PCR. RESULTS: A total of 75 isolates with reduced susceptibility to cefotaxime and/or ceftazidime (n = 75) from urine (n = 58/199; 29%) and blood (n = 17/31; 55%) were detected. All 75 isolates were phenotypically ESBL-positive and 25/75 (33%) of those also expressed an AmpC-phenotype. ESBL-PCR and amplicon sequencing revealed a majority of blaCTX-M (n = 58/75; 77%) dominated by blaCTX-M-15. All AmpC-phenotype positive isolates (n = 25/75; 33%) scored positive for one or more pAmpC-genes dominated by blaMOX/FOX. Multidrug resistance (resistance ≥ three antibiotic classes) was observed in all the 75 ESBL-positive isolates dominated by resistance to trimethoprim-sulfamethoxazole, ciprofloxacin and gentamicin. ERIC-PCR revealed genetic diversity among strains with minor clusters indicating intra-hospital spread. CONCLUSION: We have observed a high prevalence of MDR pAmpC- and/or ESBL-producing clinical E. coli isolates with FOX/MOX and CTX-Ms as the major ß-lactamase types, respectively. ERIC-PCR analyses revealed genetic diversity and some clusters indicating within-hospital spread. The overall findings strongly support the urgent need for accurate and rapid diagnostic services to guide antibiotic treatment and improved infection control measures.


Asunto(s)
Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Cefotaxima/uso terapéutico , Ceftazidima/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Plásmidos/metabolismo , beta-Lactamasas/genética , Infección Hospitalaria/diagnóstico , Infección Hospitalaria/microbiología , Infecciones por Escherichia coli/sangre , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/orina , Humanos , Pruebas de Sensibilidad Microbiana , Mozambique/epidemiología , Fenotipo , Prevalencia
7.
Antibiotics (Basel) ; 9(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260950

RESUMEN

The increased use of antibiotics in food animals has resulted in the selection of drug-resistant bacteria across the farm-to-fork continuum. This study aimed to investigate the molecular epidemiology of antibiotic-resistant Escherichia coli from intensively produced poultry in the uMgungundlovu District, KwaZulu-Natal, South Africa. Samples were collected weekly between August and September 2017 from hatching to final retail products. E. coli was isolated on eosin methylene blue agar, identified biochemically, and confirmed using polymerase chain reaction (PCR). Susceptibility to 19 antibiotics was ascertained by the Kirby-Bauer disc diffusion method. PCR was used to test for resistance genes. The clonal similarity was investigated using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR). In total, 266 E. coli isolates were obtained from all the samples, with 67.3% being non-susceptible to at least one antibiotic tested and 6.7% multidrug resistant. The highest non-susceptibility was to ampicillin (48.1%) and the lowest non-susceptibility to ceftriaxone and azithromycin (0.8%). Significant non-susceptibility was observed to tetracycline (27.4%), nalidixic acid (20.3%), trimethoprim-sulfamethoxazole (13.9%), and chloramphenicol (11.7%) which have homologues used in the poultry industry. The most frequently observed resistance genes were blaCTX-M (100%), sul1 (80%), tetA (77%), and tetB (71%). ERIC-PCR grouped isolates into 27 clusters suggesting the spread of diverse clones across the farm-to-fork continuum. This reiterates the role of intensive poultry farming as a reservoir and a potential vehicle for the transmission of antibiotic resistance, with potentially severe public health implications, thus, requiring prompt and careful mitigation measures to protect human and environmental health.

8.
Microbiol Resour Announc ; 8(21)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31123013

RESUMEN

Providencia rettgeri is an opportunistic pathogen implicated in various clinical infections. Here, we report the genome sequence of a Providencia rettgeri strain isolated from hospital effluent in South Africa, which harbors the New Delhi metallo-ß-lactamase (NDM) variant 18 gene (bla NDM-18). The 4,835,047-bp genome encodes a resistome and virulome that are of cardinal importance to Providencia infections.

9.
Infect Drug Resist ; 11: 2277-2299, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532562

RESUMEN

Acinetobacter baumannii is a leading cause of nosocomial infections due to its increased antibiotic resistance and virulence. The ability of A. baumannii to form biofilms contributes to its survival in adverse environmental conditions including hospital environments and medical devices. A. baumannii has undoubtedly propelled the interest of biomedical researchers due to its broad range of associated infections especially in hospital intensive care units. The interplay among microbial physicochemistry, alterations in the phenotype and genotypic determinants, and the impact of existing ecological niche and the chemistry of antimicrobial agents has led to enhanced biofilm formation resulting in limited access of drugs to their specific targets. Understanding the triggers to biofilm formation is a step towards limiting and containing biofilm-associated infections and development of biofilm-specific countermeasures. The present review therefore focused on explaining the impact of environmental factors, antimicrobial resistance, gene alteration and regulation, and the prevailing microbial ecology in A. baumannii biofilm formation and gives insights into prospective anti-infective treatments.

10.
Dis Aquat Organ ; 126(3): 199-209, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29160218

RESUMEN

Antibacterial compounds and metals co-select for antimicrobial resistance when bacteria harbour resistance genes towards both types of compounds, facilitating the proliferation and evolution of antimicrobial and heavy metal resistance. Antimicrobial and heavy metal resistance indices of 42 Gram-negative bacteria from a tilapia aquaculture system were determined to identify possible correlations between these phenotypes. Agar dilution assays were carried out to determine susceptibility to cadmium, copper, lead, mercury, chromate and zinc, while susceptibility to 21 antimicrobial agents was investigated by disk diffusion assays. Presence of merA, the mercury resistance gene, was determined by dot-blot hybridizations and PCR. Association of mercury resistance with integrons and transposon Tn21 was also investigated by PCR. Isolates displayed a high frequency of antimicrobial (erythromycin: 100%; ampicillin: 85%; trimethoprim: 78%) and heavy metal (Zn2+: 95%; Cd2+: 91%) resistance. No correlation was established between heavy metal and multiple antibiotic resistance indices. Significant positive correlations were observed between heavy metal resistance profiles, indices, Cu2+ and Cr3+ resistance with erythromycin resistance. Significant positive correlations were observed between merA (24%)/Tn21 (24%) presence and heavy metal resistance profiles and indices; however, significant negative correlations were obtained between integron-associated qacE∆1 (43%) and sulI (26%) gene presence and heavy metal resistance indices. Heavy metal and antimicrobial agents co-select for resistance, with fish-associated, resistant bacteria demonstrating simultaneous heavy metal resistance. Thus, care should be taken when using anti-fouling heavy metals as feed additives in aquaculture facilities.


Asunto(s)
Antibacterianos/farmacología , Acuicultura , Bacterias/efectos de los fármacos , Metales Pesados/farmacología , Tilapia/microbiología , Animales , Bacterias/clasificación , Bacterias/metabolismo , Farmacorresistencia Bacteriana , Integrones , Sudáfrica
11.
Sensors (Basel) ; 13(3): 2802-17, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447012

RESUMEN

The increasing incidence of multidrug-resistant pathogens has stimulated the search for novel anti-virulence compounds. Although many phytochemicals show promising antimicrobial activity, their power lies in their anti-virulence properties. Thus the quorum sensing (QS) inhibitory activity of four crude Kigelia africana fruit extracts was assessed qualitatively and quantitatively using the Chromobacterium violaceum and Agrobacterium tumefaciens biosensor systems. Inhibition of QS-controlled violacein production in C. violaceum was assayed using the qualitative agar diffusion assay as well as by quantifying violacein inhibition using K. africana extracts ranging from 0.31-8.2 mg/mL. Qualitative modulation of QS activity was investigated using the agar diffusion double ring assay. All four extracts showed varying levels of anti-QS activity with zones of violacein inhibition ranging from 9-10 mm. The effect on violacein inhibition was significant in the following order: hexane > dichloromethane > ethyl acetate > methanol. Inhibition was concentration-dependent, with the ≥90% inhibition being obtained with ≥1.3 mg/mL of the hexane extract. Both LuxI and LuxR activity were affected by crude extracts suggesting that the phytochemicals target both QS signal and receptor. K. africana extracts with their anti-QS activity, have the potential to be novel therapeutic agents, which might be important in reducing virulence and pathogenicity of drug-resistant bacteria in vivo.


Asunto(s)
Técnicas Biosensibles , Extractos Vegetales/farmacología , Percepción de Quorum/efectos de los fármacos , Agrobacterium tumefaciens/efectos de los fármacos , Agrobacterium tumefaciens/crecimiento & desarrollo , Bignoniaceae/química , Chromobacterium/efectos de los fármacos , Chromobacterium/crecimiento & desarrollo , Farmacorresistencia Microbiana/genética , Frutas/química , Humanos , Extractos Vegetales/química
12.
Ann Clin Microbiol Antimicrob ; 10: 16, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21545730

RESUMEN

BACKGROUND: Elizabethkingia spp. are opportunistic pathogens often found associated with intravascular device-related bacteraemias and ventilator-associated pneumonia. Their ability to exist as biofilm structures has been alluded to but not extensively investigated. METHODS: The ability of Elizabethkingia meningoseptica isolate CH2B from freshwater tilapia (Oreochromis mossambicus) and E. meningoseptica strain NCTC 10016(T) to adhere to abiotic surfaces was investigated using microtiter plate adherence assays following exposure to varying physico-chemical challenges. The role of cell-surface properties was investigated using hydrophobicity (bacterial adherence to hydrocarbons), autoaggregation and coaggregation assays. The role of extracellular components in adherence was determined using reversal or inhibition of coaggregation assays in conjunction with Listeria spp. isolates, while the role of cell-free supernatants, from diverse bacteria, in inducing enhanced adherence was investigated using microtitre plate assays. Biofilm architecture of isolate CH2B alone as well as in co-culture with Listeria monocytogenes was investigated using flow cells and microscopy. RESULTS: E. meningoseptica isolates CH2B and NCTC 10016(T) demonstrated stronger biofilm formation in nutrient-rich medium compared to nutrient-poor medium at both 21 and 37°C, respectively. Both isolates displayed a hydrophilic cell surface following the bacterial adherence to xylene assay. Varying autoaggregation and coaggregation indices were observed for the E. meningoseptica isolates. Coaggregation by isolate CH2B appeared to be strongest with foodborne pathogens like Enterococcus, Staphylococcus and Listeria spp. Partial inhibition of coaggregation was observed when isolate CH2B was treated with heat or protease exposure, suggesting the presence of heat-sensitive adhesins, although sugar treatment resulted in increased coaggregation and may be associated with a lactose-associated lectin or capsule-mediated attachment. CONCLUSIONS: E. meningoseptica isolate CH2B and strain NCTC 10016(T) displayed a strong biofilm-forming phenotype which may play a role in its potential pathogenicity in both clinical and aquaculture environments. The ability of E. meningoseptica isolates to adhere to abiotic surfaces and form biofilm structures may result from the hydrophilic cell surface and multiple adhesins located around the cell.


Asunto(s)
Adhesión Bacteriana , Biopelículas , Flavobacteriaceae/aislamiento & purificación , Flavobacteriaceae/fisiología , Tilapia/microbiología , Animales , Flavobacteriaceae/química , Flavobacteriaceae/genética , Interacciones Hidrofóbicas e Hidrofílicas
13.
Int J Food Microbiol ; 114(3): 295-306, 2007 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-17173998

RESUMEN

An increasing incidence of multidrug resistance amongst Aeromonas spp. isolates, which are both fish pathogens and emerging opportunistic human pathogens, has been observed worldwide. This can be attributed to the horizontal transfer of mobile genetic elements, viz.: plasmids and class 1 integrons. The antimicrobial susceptibilities of 37 Aeromonas spp. isolates, from tilapia, trout and koi aquaculture systems, were determined by disc-diffusion testing. The plasmid content of each isolate was examined using the alkaline lysis protocol. Tet determinant type was determined by amplification using two degenerate primer sets and subsequent HaeIII restriction. The presence of integrons was determined by PCR amplification of three integrase genes, as well as gene cassettes, and the qacEDelta1-sulI region. Thirty-seven Aeromonas spp. isolates were differentiated into six species by aroA PCR-RFLP, i.e., A. veronii biovar sobria, A. hydrophila, A. encheleia, A. ichtiosoma, A. salmonicida, and A. media. High levels of resistance to tetracycline (78.3%), amoxicillin (89.2%), and augmentin (86.5%) were observed. Decreased susceptibility to erythromycin was observed for 67.6% of isolates. Although 45.9% of isolates displayed nalidixic acid resistance, majority of isolates were susceptible to the fluoroquinolones. The MAR index ranged from 0.12 to 0.59, with majority of isolates indicating high-risk contamination originating from humans or animals where antibiotics are often used. Plasmids were detected in 21 isolates, with 14 of the isolates displaying multiple plasmid profiles. Single and multiple class A family Tet determinants were observed in 27% and 48.7% of isolates, respectively, with Tet A being the most prevalent Tet determinant type. Class 1 integron and related structures were amplified and carried different combinations of the antibiotic resistance gene cassettes ant(3'')Ia, aac(6')Ia, dhfr1, oxa2a and/or pse1. Class 2 integrons were also amplified, but the associated resistance cassettes could not be identified. Integrons and Tet determinants were carried by 68.4% of isolates bearing plasmids, although it was not a strict association. These plasmids could potentially mobilize the integrons and Tet determinants, thus transferring antimicrobial resistance to other water-borne bacteria or possible human pathogens. The identification of a diversity of resistance genes in the absence of antibiotic selective pressure in Aeromonas spp. from aquaculture systems highlights the risk of these bacteria serving as a reservoir of resistance genes, which may be transferred to other bacteria in the aquaculture environment.


Asunto(s)
Aeromonas/efectos de los fármacos , Aeromonas/genética , Conjugación Genética , Resistencia a la Tetraciclina/genética , Microbiología del Agua , Animales , Antibacterianos/farmacología , Acuicultura , ADN Bacteriano/química , ADN Bacteriano/genética , Reservorios de Enfermedades , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Amplificación de Genes , Humanos , Integrones , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Sudáfrica
14.
J Antimicrob Chemother ; 58(6): 1274-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17040923

RESUMEN

OBJECTIVES: To characterize the mechanisms of fluoroquinolone resistance in urinary tract pathogens exhibiting a multiple antibiotic resistance phenotype as well as a high-level resistance to fluoroquinolones. METHODS: Nineteen Escherichia coli urinary tract infection pathogens exhibiting high-level resistance to fluoroquinolones were characterized in this study. Alterations in outer membrane proteins (OMPs) and lipopolysaccharide (LPS) were analysed by PAGE. Changes to the quinolone resistance-determining regions (QRDRs) of GyrA and ParC were determined by PCR and DNA sequencing. The presence of the qnrA gene was determined by PCR amplification. Ciprofloxacin uptake was determined spectrophotometrically using the quinolone accumulation assay. RESULTS: OMP analysis showed decreased expression, the absence of certain proteins or the presence of proteins with altered molecular weights when compared with wild-type strains. Most isolates possessed a smooth LPS phenotype. Isolates had double mutations in GyrA codons 83 and 87, in addition to a ParC alteration at Ser-80/Glu-84. Isolates accumulated varying levels of ciprofloxacin, and upon the addition of carbonyl cyanide m-chlorophenylhydrazone, increased accumulation was observed in all instances. E. coli isolates with a rough LPS phenotype appeared to accumulate higher levels of ciprofloxacin compared with those with a smooth LPS phenotype expressing OmpF normally, or even those not possessing OmpF. All E. coli isolates tested demonstrated active efflux of ciprofloxacin. Plasmid-mediated quinolone resistance (presence of the qnrA gene) was observed in 36.8% of isolates. CONCLUSIONS: A combination of target gene alterations, altered OM permeability, presence of the qnrA gene and active efflux appear to act together to produce a high-level, multiresistance phenotype.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli/efectos de los fármacos , Fluoroquinolonas/farmacología , Infecciones Urinarias/microbiología , Sustitución de Aminoácidos/genética , Proteínas de la Membrana Bacteriana Externa/análisis , Ciprofloxacina/metabolismo , Citoplasma/química , Girasa de ADN/genética , Topoisomerasa de ADN IV/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/genética , Humanos , Lipopolisacáridos/análisis , Peso Molecular , Mutación , Plásmidos/genética , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA