Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361876

RESUMEN

One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimers (IAJDs) were discovered in our laboratories in 2021 to represent a new class of synthetic vectors for the targeted delivery of messenger RNA (mRNA). They coassemble with mRNA by simple injection of their ethanol solution into a pH 4 acetate buffer containing the nucleic acid into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions. DNPs are competitive with 4-component lipid nanoparticles (LNPs), which are used in commercial COVID-19 vaccines, except that IAJDs are prepared in fewer reaction steps than each individual component of the LNPs. This simple methodology for the synthesis of IAJDs and their coassembly with mRNA into DNPs, together with the precise placement of their individual components and indefinite stability at room temperature in air, make them attractive candidates for the development of nanomedicine-based targeted mRNA delivery. Access to the large-scale synthesis of IAJDs without the need for sophisticated technologies, instrumentation, and synthetic skills is expected to open numerous new opportunities worldwide in nanomedicine. The goal of this publication is to report an accelerated ten-gram-scale synthesis of IAJD97 from inexpensive food additives obtained from renewable plant phenolic acid starting materials by methodologies accessible to any laboratory. This accelerated synthesis can be accomplished in 4 days. We expect that the work reported here will impact the field of nanomedicine in both developed and less developed countries.

2.
J Am Chem Soc ; 146(6): 3627-3634, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306714

RESUMEN

Constitutional isomerism has been previously demonstrated by one of our laboratories to represent a powerful design strategy for the elaboration of complex functional self-organizations. Here we report the design, synthesis, and characterization of 14 positional, skeletal, and functional constitutional isomeric one-component, multifunctional, sequence-defined, amphiphilic ionizable Janus dendrimers (IAJDs). Their coassembly by simple injection with luciferase mRNA (Luc-mRNA) to form dendrimersome nanoparticles (DNPs) was studied. Subsequently, the resulting DNPs were employed to investigate, with screening experiments, the delivery of Luc-mRNA in vivo. Constitutional isomerism was shown to produce changes of up to two orders of magnitude of the total-body luciferase activity and targeted luciferase activity to the spleen and liver, of up to three orders of magnitude difference in targeted luciferase activity to the lungs and up to six orders of magnitude to lymph nodes. These results indicate that constitutional isomerism may represent not only a simple but also an important synthetic strategy that most probably may impact the activity of all components of synthetic vectors used in RNA-based nanomedicine, including in mRNA vaccines and therapeutics.


Asunto(s)
Dendrímeros , Nanopartículas , Isomerismo , Dendrímeros/química , ARN Mensajero/genética , Luciferasas
3.
Pharmaceutics ; 15(6)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37376020

RESUMEN

Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...