Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Cell ; 184(18): 4651-4668.e25, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34450028

RESUMEN

GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.


Asunto(s)
Productos Biológicos/uso terapéutico , Encéfalo/metabolismo , Enfermedades por Almacenamiento Lisosomal/terapia , Progranulinas/uso terapéutico , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Endosomas/metabolismo , Femenino , Demencia Frontotemporal/sangre , Demencia Frontotemporal/líquido cefalorraquídeo , Gliosis/complicaciones , Gliosis/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación/patología , Metabolismo de los Lípidos , Lipofuscina/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Degeneración Nerviosa/patología , Fenotipo , Progranulinas/deficiencia , Progranulinas/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Transferrina/metabolismo , Distribución Tisular
3.
Methods Mol Biol ; 1319: 155-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26060074

RESUMEN

The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine.


Asunto(s)
Técnicas de Visualización de Superficie Celular/métodos , Proteínas Recombinantes/biosíntesis , Saccharomyces cerevisiae/genética , Mapeo Epitopo/métodos , Unión Proteica , Ingeniería de Proteínas/métodos , Estabilidad Proteica , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 287(16): 13407-21, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22378784

RESUMEN

Complexes of phi29 DNA polymerase and DNA fluctuate on the millisecond time scale between two ionic current amplitude states when captured atop the α-hemolysin nanopore in an applied field. The lower amplitude state is stabilized by complementary dNTP and thus corresponds to complexes in the post-translocation state. We have demonstrated that in the upper amplitude state, the DNA is displaced by a distance of one nucleotide from the post-translocation state. We propose that the upper amplitude state corresponds to complexes in the pre-translocation state. Force exerted on the template strand biases the complexes toward the pre-translocation state. Based on the results of voltage and dNTP titrations, we concluded through mathematical modeling that complementary dNTP binds only to the post-translocation state, and we estimated the binding affinity. The equilibrium between the two states is influenced by active site-proximal DNA sequences. Consistent with the assignment of the upper amplitude state as the pre-translocation state, a DNA substrate that favors the pre-translocation state in complexes on the nanopore is a superior substrate in bulk phase for pyrophosphorolysis. There is also a correlation between DNA sequences that bias complexes toward the pre-translocation state and the rate of exonucleolysis in bulk phase, suggesting that during DNA synthesis the pathway for transfer of the primer strand from the polymerase to exonuclease active site initiates in the pre-translocation state.


Asunto(s)
Fagos de Bacillus/enzimología , Fagos de Bacillus/genética , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Nanoporos , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Dominio Catalítico/fisiología , ADN Viral/metabolismo , ADN Polimerasa Dirigida por ADN/síntesis química , Difosfatos/metabolismo , Activación Enzimática/fisiología , Exonucleasas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Secuencias Invertidas Repetidas/genética , Proteínas Motoras Moleculares/fisiología , Conformación de Ácido Nucleico
5.
Nat Biotechnol ; 30(4): 344-8, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22334048

RESUMEN

An emerging DNA sequencing technique uses protein or solid-state pores to analyze individual strands as they are driven in single-file order past a nanoscale sensor. However, uncontrolled electrophoresis of DNA through these nanopores is too fast for accurate base reads. Here, we describe forward and reverse ratcheting of DNA templates through the α-hemolysin nanopore controlled by phi29 DNA polymerase without the need for active voltage control. DNA strands were ratcheted through the pore at median rates of 2.5-40 nucleotides per second and were examined at one nucleotide spatial precision in real time. Up to 500 molecules were processed at ∼130 molecules per hour through one pore. The probability of a registry error (an insertion or deletion) at individual positions during one pass along the template strand ranged from 10% to 24.5% without optimization. This strategy facilitates multiple reads of individual strands and is transferable to other nanopore devices for implementation of DNA sequence analysis.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanoporos , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Proteínas Hemolisinas/química , Nucleótidos/química , Nucleótidos/genética
6.
J Am Chem Soc ; 132(50): 17961-72, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21121604

RESUMEN

Coupling nucleic acid processing enzymes to nanoscale pores allows controlled movement of individual DNA or RNA strands that is reported as an ionic current/time series. Hundreds of individual enzyme complexes can be examined in single-file order at high bandwidth and spatial resolution. The bacteriophage phi29 DNA polymerase (phi29 DNAP) is an attractive candidate for this technology, due to its remarkable processivity and high affinity for DNA substrates. Here we show that phi29 DNAP-DNA complexes are stable when captured in an electric field across the α-hemolysin nanopore. DNA substrates were activated for replication at the nanopore orifice by exploiting the 3'-5' exonuclease activity of wild-type phi29 DNAP to excise a 3'-H terminal residue, yielding a primer strand 3'-OH. In the presence of deoxynucleoside triphosphates, DNA synthesis was initiated, allowing real-time detection of numerous sequential nucleotide additions that was limited only by DNA template length. Translocation of phi29 DNAP along DNA substrates was observed in real time at Ångstrom-scale precision as the template strand was drawn through the nanopore lumen during replication.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Nanoporos , Proteínas Virales/química , Catálisis , Replicación del ADN , Modelos Biológicos , Especificidad por Sustrato
7.
Nat Nanotechnol ; 5(11): 798-806, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20871614

RESUMEN

Nanopores can be used to analyse DNA by monitoring ion currents as individual strands are captured and driven through the pore in single file by an applied voltage. Here, we show that serial replication of individual DNA templates can be achieved by DNA polymerases held at the α-haemolysin nanopore orifice. Replication is blocked in the bulk phase, and is initiated only after the DNA is captured by the nanopore. We used this method, in concert with active voltage control, to observe DNA replication catalysed by bacteriophage T7 DNA polymerase (T7DNAP) and by the Klenow fragment of DNA polymerase I (KF). T7DNAP advanced on a DNA template against an 80-mV load applied across the nanopore, and single nucleotide additions were measured on the millisecond timescale for hundreds of individual DNA molecules in series. Replication by KF was not observed when this enzyme was held on top of the nanopore orifice at an applied potential of 80 mV. Sequential nucleotide additions by KF were observed upon applying controlled voltage reversals.


Asunto(s)
Replicación del ADN , ADN/metabolismo , Electroforesis , Nanoporos , Nanotecnología/métodos , Proteínas Bacterianas , ADN/química , ADN Polimerasa I/química , ADN Polimerasa I/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Campos Electromagnéticos , Proteínas Hemolisinas/química , Modelos Moleculares , Oligonucleótidos/química , Oligonucleótidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA