Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Virol Methods ; 301: 114457, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34998828

RESUMEN

Begomovirus Yellow vein mosaic virus causes severe yield losses in okra and even the resistant lines developed through conventional breeding show susceptibility at various levels. This paper describes the development of YVMV resistant lines through RNAi strategy. A universal ihpRNA construct harbouring ßC1 ORF from the ß-satellite of the begomovirus was designed using pRNAi-LIC plasmid. Complementarity checks in sequence databases had shown no off-target effects by the target region and the success of siRNA in interference was proven using Custom Dicer-Substrate siRNA analysis. The ßC1 ORF of the begomovirus was PCR amplified and sequenced using the primer combination designed. The pRNAi-LIC vector, a derivative of pCAMBIA2300 containing duplicated CaMV 35S promoter and Nos terminator from pYL44, was SmaI digested and the amplified sense and antisense strands of the ßC1 region were cloned. E. coli transformed with the plasmid were screened for antibiotic resistance, and the plasmids confirmed for the sense and antisense regions through sequencing, were transferred to Agrobacterium tumefaciens strain GV3101. In planta transformation strategy was followed to transform a highly susceptible okra cv. Salkeerthi with ihpRNA-ßC1 cassette. Transformation success, confirmed by the amplification of sense strand using the primers VLIC1 and VLIC5, was 11.42 %. Transcription of siRNA from the ßC1 ORF in the transgenic lines was confirmed by its PCR amplification from the cDNA, using the stem loop primers designed (68 bp). When the transformed and healthy wild-type plants were co-grown with infected wild-type plants, inside an insect cage released with whiteflies and maintained within a containment facility, three of the four transgenic plants remained completely healthy throughout the crop span.


Asunto(s)
Abelmoschus , Begomovirus , Geminiviridae , Virus del Mosaico , Begomovirus/genética , Escherichia coli/genética , Geminiviridae/genética , Virus del Mosaico/genética , Enfermedades de las Plantas , ARN
2.
Folia Microbiol (Praha) ; 67(1): 103-108, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34554392

RESUMEN

Fungicides are commonly used to manage plant pathogens. However, little is known about their effects on the non-target fungal communities that inhabit inside and outside the plant. These fungicides may have adverse effects on beneficial microbial communities with possible consequences for plant health and productivity. Hence, a metagenomic approach, based on the ITS2 region of fungal rDNA, was used to study the impact of foliar application of two fungicides (propineb and iprodione + carbendazim) on non-target tomato leaf fungal communities, in the context of early blight disease management. Metagenomic analysis revealed that the richness and diversity of tomato leaf fungal populations were adversely affected by the chemical treatments tested. Among the two fungicides, propineb (contact fungicide) imparted less non-targeted microorganisms than iprodione + carbendazim (systemic fungicide). In addition, all samples showed association of pathogenic genera Cladosporium, Corynespora, Pseudocercospora along with early blight pathogen Alternaria on tomato leaves that otherwise were undetected. Metagenomic studies also revealed a new mode of action for fungicides and bioagents besides their direct effect that is shifting the microbial community structure so that it provides greater resistance against the pathogen.


Asunto(s)
Fungicidas Industriales , Micobioma , Solanum lycopersicum , Fungicidas Industriales/farmacología , Metagenómica , Hojas de la Planta
3.
J Vector Borne Dis ; 56(2): 111-121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31397386

RESUMEN

BACKGROUND & OBJECTIVES: Oral administration of tender leaf extract of Glycosmis pentaphylla is traditionally known to prevent the chikungunya virus infection. Even with wide usage, the antiviral components in this plant are neither identified nor characterized. This study was carried out with the objectives of profiling the phytocompounds in this plant through LC-MS/MS and to identify the active antiviral constituents and their drug-likeliness through molecular docking. METHODS: Phytocompounds were extracted hydro-alcoholically from powdered plant parts and analyzed using LC-MS/MS. Based on mass-to-charge ratio from LC-MS/MS, compounds were identified and used as ligands for molecular docking against chikungunya target proteins. The active principles were subjected to ADME/T analysis to verify their drug-likeliness. RESULTS: The docking results and ADME/T evaluation showed that the compounds, isovaleric acid and avicequinone- C have good interaction with the protein targets and hence could be the antiviral principles of the selected plant. These compounds presented acceptable drug properties and hence could be carried forward to in vivo studies for drug development. INTERPRETATION & CONCLUSION: The antiviral properties of G. pentaphylla are known since time-immemorial. This study revealed the probable interactions after the oral administration of tender leaves of Glycosmis in preventing the chikungunya virus infection and paves the path for designing future plant-based drugs.


Asunto(s)
Virus Chikungunya/efectos de los fármacos , Hemiterpenos/farmacología , Ácidos Pentanoicos/farmacología , Extractos Vegetales/farmacología , Quinonas/farmacología , Rutaceae/química , Administración Oral , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...