Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; 20(15): e2306832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009745

RESUMEN

Superionic conductors are key components of solid-state batteries (SSBs). Multicomponent or high-entropy materials, offering a vast compositional space for tailoring properties, have recently attracted attention as novel solid electrolytes (SEs). However, the influence of synthetic parameters on ionic conductivity in compositionally complex SEs has not yet been investigated. Herein, the effect of cooling rate after high-temperature annealing on charge transport in the multicationic substituted lithium argyrodite Li6.5[P0.25Si0.25Ge0.25Sb0.25]S5I is reported. It is demonstrated that a room-temperature ionic conductivity of ∼12 mS cm-1 can be achieved upon cooling at a moderate rate, superior to that of fast- and slow-cooled samples. To rationalize the findings, the material is probed using powder diffraction, nuclear magnetic resonance and X-ray photoelectron spectroscopy combined with electrochemical methods. In the case of moderate cooling rate, favorable structural (bulk) and compositional (surface) characteristics for lithium diffusion evolve. Li6.5[P0.25Si0.25Ge0.25Sb0.25]S5I is also electrochemically tested in pellet-type SSBs with a layered Ni-rich oxide cathode. Although delivering larger specific capacities than Li6PS5Cl-based cells at high current rates, the lower (electro)chemical stability of the high-entropy Li-ion conductor led to pronounced capacity fading. The research data indicate that subtle changes in bulk structure and surface composition strongly affect the electrical conductivity of high-entropy lithium argyrodites.

2.
ACS Appl Mater Interfaces ; 14(1): 543-556, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34932299

RESUMEN

The intrinsic stability of the 5 V LiCoPO4-LiCo2P3O10 thin-film (carbon-free) cathode material coated with MoO3 thin layer is studied using a comprehensive synchrotron electron spectroscopy in situ approach combined with first-principle calculations. The atomic-molecular level study demonstrates fully reversible electronic properties of the cathode after the first electrochemical cycle. The polyanionic oxide is not involved in chemical reactions with the fluoroethylene-containing liquid electrolyte even when charged to 5.1 V vs Li+/Li. The high stability of the cathode is explained on the basis of the developed energy level model. In contrast, the chemical composition of the cathode-electrolyte interface evolves continuously by involving MoO3 in the decomposition reaction with consequent leaching of oxide from the surface. The proposed mechanisms of chemical reactions are attributed to external electrolyte oxidation via charge transfer from the relevant electron level to the MoO3 valence band state and internal electrolyte oxidation via proton transfer to the solvents. This study provides a deeper insight into the development of both a doping strategy to enhance the electronic conductivity of high-voltage cathode materials and an efficient surface coating against unfavorable interfacial chemical reactions.

3.
Materials (Basel) ; 14(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34640223

RESUMEN

This work provides a conceptually new way of thinking about the light-absorbing mechanism in additive-free black porous anodic alumina (black PAA, or b-PAA) layers obtained via "burning" anodizing regime. The new insight into the controllable photonic effects in PAA allows the implementation of the optical blackening method based on the deliberate randomization of the initially well-ordered nanopore arrangement. The proposed black coloration mechanism rests solely on the destructive interference of light after its multiple scattering. Similar effects have been earlier considered for some natural or artificially created biomimetic structures (e.g., the so-called "moth eye effect", or the coloration mechanism in the Neurothemis tullia dragonfly wings). Comprehensive analysis confirmed that the chemical composition of b-PAA has only a minor influence on the color changes and the optical density increase, and that the light-absorbing properties most likely result from the structural effects. The new functional 2D materials exhibit strong adhesion to aluminum surface, are cost-effective and suitable for application under harsh thermal or UV-light conditions. They are potentially useful for manufacturing of optical devices or heat-resistant coatings in aerospace technologies, as well as solid supports for biological filtration and fluorescence imaging.

4.
J Phys Chem Lett ; 11(10): 3754-3760, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32301321

RESUMEN

We demonstrate that key parameters for efficient electrocatalytic oxidation of water are the energetics of the redox complexes associated with their ionization and electrochemical potentials coupled to the change of metal-oxygen band hybridization. We investigate the catalytic activity of the LiCoPO4-LiCo2P3O10 tailored compound, which is a 5 V cathode material for Li-ion batteries. The reason for the weak catalytic activity of the lithiated compound toward the oxygen evolution reaction is a large energy difference between the electronic states involved in the electrochemical reaction. A highly active catalyst is obtained by tuning the relative energetic position of the electronic levels involved in the charge transfer reaction, which in turn are governed by the lithium content. A significant lowering of the overpotential from >550 mV to ∼370 mV at 10 mA cm-2 is achieved via a decrease of the ionization potential and shifting the electrochemical potential near the electronic states of the molecule, thereby facilitating water oxidation.

5.
ACS Appl Mater Interfaces ; 10(4): 4018-4030, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29313330

RESUMEN

Metallopolymers are a unique class of functional materials because of their redox-mediated optoelectronic and catalytic switching capabilities and, as recently shown, their outstanding structure formation and separation capabilities. Within the present study, (tri)block copolymers of poly(isoprene) (PI) and poly(ferrocenylmethyl methacrylate) having different block compositions and overall molar masses up to 328 kg mol-1 are synthesized by anionic polymerization. The composition and thermal properties of the metallopolymers are investigated by state-of-the-art polymer analytical methods comprising size exclusion chromatography, 1H NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. As a focus of this work, excellent microphase separation of the synthesized (tri)block copolymers is proven by transmission electron microscopy, scanning electron microcopy, energy-dispersive X-ray spectroscopy, small-angle X-ray scattering measurements showing spherical, cylindrical, and lamellae morphologies. As a highlight, the PI domains are subjected to ozonolysis for selective domain removal while maintaining the block copolymer morphology. In addition, the novel metalloblock copolymers can undergo microphase separation on cellulose-based substrates, again preserving the domain order after ozonolysis. The resulting nanoporous structures reveal an intriguing switching capability after oxidation, which is of interest for controlling the size and polarity of the nanoporous architecture.

6.
Langmuir ; 30(5): 1204-9, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24456557

RESUMEN

A novel strategy to achieve easily scalable magneto-responsive nanoceramics with core/shell and nanorattle-type or yolk/shell architectures based on a ferrocene-containing polymer precursor is described. Monodisperse nanorattle-type magnetic particles are obtained by using convenient semicontinuous emulsion polymerization and Stöber process protocols followed by thermal treatment. The particles are characterized by TGA, TEM, WAXS, DLS, XPS, and Raman spectroscopy. Herein, established synthetic protocols widen opportunities for the convenient bottom-up strategies of various ferrocene-precursor-based spherical architectures for advanced ceramics with potential applications within fields of sensing and stimuli-responsive nanophotonics.


Asunto(s)
Emulsiones/química , Fenómenos Magnéticos , Nanopartículas/química , Compuestos Ferrosos/química , Metalocenos , Microscopía Electrónica de Transmisión , Polimerizacion , Temperatura
7.
J Am Chem Soc ; 135(11): 4467-75, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23421377

RESUMEN

In recent years, there have been significant efforts to find novel photocatalytic materials with improved properties. Thus, there is an active ongoing search for new materials that can operate at a broad range of wavelengths for photocatalytic reactions. Among photocatalytically active semiconductors, considerable attention has been given to tungsten oxide with a band gap of E(g) ≈ 2.6 eV, which provides the opportunity to harvest visible light. In the present work, we report on a one-step synthesis of c-WO(3-x)/WO3×H2O nanowhiskers dispersed in a hydrolytically stable mesoporous polycarbosilane-siloxane ([-Si(O)CH2-]n) matrix. The as-synthesized nanocomposites possess high photocatalytic activity for the degradation of methylene blue (MB) under visible light irradiation. The enhanced photocatalytic activity is due to (i) the reduction in the electron-hole recombination rate because of the reduced dimensions of nanowhiskers, (ii) more efficient consumption of photogenerated electrons and holes as a result of the high surface-to-bulk-ratio of the nanowhiskers, and (iii) better electron-hole pair separation due to the formation of c-WO(3-x)/WO3×H2O nanoheterostructures.

8.
Phys Chem Chem Phys ; 14(35): 12321-31, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22858824

RESUMEN

The stability of the valence state of the 3d transition metal ions and the stoichiometry of LiMO(2) (M = Co, Ni, Mn) layered oxides at the surface-electrolyte interface plays a crucial role in energy storage applications. The surface oxidation/reduction of the cations caused by the contact of the solids to air or to the electrolyte results in the blocking of the Li-transport through the interface that leads to the fast batteries deterioration. The influence of the end-of-charge voltage on the chemical composition and the oxidation state of 3d transition metal ions, as well as the stability of the solid-electrolyte interface formed during the electrochemical Li-deintercalation/intercalation of the LiCoO(2) and Li(Ni,Mn,Co)O(2), have been investigated by X-ray photoelectron spectroscopy. While the chemical composition of the solid-electrolyte interface is similar for both layered oxide surfaces, the electrochemical cycling to some critical voltage values leads to the disappearance of the interface. By the analysis of the shape of the 2p and 3s photoelectron emissions we show that the formation of the solid-electrolyte interface layer correlates with the partial reduction of the trivalent Co ions at the electrolyte-LiCoO(2) interface and the amount of the Co(2+) ions is increased as the solid-electrolyte interface vanishes. In contrast, the Mn(4+), Co(3+) and Ni(2+) ions of the Li(Ni,Mn,Co)O(2) are stable at the interface under the electrochemical cycling to higher end-of-charge voltage. A correlation between deterioration of the LiCoO(2) and Li(Ni,Mn,Co)O(2) batteries and the change of electronic structure at the surface/interface after the electrochemical cycling has been found. The dissolution of the solid-electrolyte interface layer might be the reason for the fast deterioration of the Li-ion batteries.

9.
Chemistry ; 16(7): 2300-8, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20029915

RESUMEN

Gold nanoparticles of 10-24 and 5-8 nm in size were obtained by chemical citrate reduction and UV photoreduction, respectively, on acid-treated multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNT composites. The shape and size of the deposited Au nanoparticles were found to be dependent upon the synthetic method used. Single-crystalline, hexagonal gold particles were produced in the case of UV photoreduction on ZnO/MWCNT, whereas spherical Au particles were deposited on MWCNT when the chemical citrate reduction method was used. In the UV photoreduction route, n-doped ZnO serves as the e(-) donor, whereas the solvent is the hole trap. All materials were fully characterised by UV/Vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and BET surface analysis. The catalytic activity of the composites was studied for the selective hydrogenation of alpha,beta-unsaturated carbonyl compound 3,7-dimethyl-2,6-octadienal (citral). The Au/ZnO/MWCNT composite favours the formation of unsaturated alcohols (selectivity=50% at a citral conversion of 20%) due to the presence of single-crystalline, hexagonal gold particles, whereas saturated aldehyde formation is favoured in the case of the Au/MWCNT nanocomposite that contains spherical gold particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA