Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arthritis Rheumatol ; 74(7): 1139-1146, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35166055

RESUMEN

OBJECTIVE: Genome-wide association studies have connected PADI4, encoding peptidylarginine deiminase 4 (PAD4), with rheumatoid arthritis (RA). PAD4 promotes neutrophil extracellular trap (NET) formation. This study was undertaken to investigate the origin of PAD4 and the importance of NET formation in a C57BL/6 mouse model of arthritis. METHODS: To permit the effective use of C57BL/6 mice in the collagen-induced arthritis (CIA) model, we introduced the administration of granulocyte colony-stimulating factor (G-CSF) for 4 consecutive days in conjunction with the booster immunization on day 21. Mice with global Padi4 deficiency (Padi4-/- ) and mice with hematopoietic lineage-specific Padi4 deficiency (Padi4Vav1Cre/+ ) were evaluated in the model. RESULTS: G-CSF significantly increased the incidence and severity of CIA. G-CSF-treated mice showed elevated citrullinated histone H3 (Cit-H3) levels in plasma, while vehicle-treated mice did not. Immunofluorescence microscopy revealed deposition of Cit-H3 in synovial tissue in G-CSF-treated mice. Padi4-/- mice developed less severe arthritis and had lower levels of serum interleukin-6 and plasma Cit-H3, lower levels of Cit-H4 in synovial tissue, and less bone erosion on micro-computed tomography than Padi4+/+ mice in the G-CSF-modified CIA model. Similarly, Padi4Vav1Cre/+ mice developed less severe arthritis, compared with Padi4fl/fl mice, and presented the same phenotype as Padi4-/- mice. CONCLUSION: We succeeded in developing an arthritis model suitable for use in C57BL/6 mice that is fully compliant with high animal welfare standards. We observed a >90% incidence of arthritis in male mice and detectable NET markers. This model, with some features consistent with human RA, demonstrates that hematopoietic PAD4 is an important contributor to arthritis development and may prove useful in future RA research.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Arginina Deiminasa Proteína-Tipo 4 , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/enzimología , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/enzimología , Colágeno , Estudio de Asociación del Genoma Completo , Factor Estimulante de Colonias de Granulocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Desiminasas de la Arginina Proteica , Microtomografía por Rayos X
2.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35054890

RESUMEN

Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2wt) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIPwt) and its phosphorylation-deficient mutant RKIPS153A, known inhibitors of the ERK1/2 signaling cascade. RKIPwt and RKIPS153A attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.


Asunto(s)
Apoptosis , Accidente Cerebrovascular Isquémico/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Animales , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Inflamación , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/fisiopatología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Neuronas/fisiología , Proteómica
3.
Cell Chem Biol ; 28(12): 1728-1739.e5, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34352225

RESUMEN

Aberrant protein citrullination is associated with many pathologies; however, the specific effects of this modification remain unknown. We have previously demonstrated that serine protease inhibitors (SERPINs) are highly citrullinated in rheumatoid arthritis (RA) patients. These citrullinated SERPINs include antithrombin, antiplasmin, and t-PAI, which regulate the coagulation and fibrinolysis cascades. Notably, citrullination eliminates their inhibitory activity. Here, we demonstrate that citrullination of antithrombin and t-PAI impairs their binding to their cognate proteases. By contrast, citrullination converts antiplasmin into a substrate. We recapitulate the effects of SERPIN citrullination using in vitro plasma clotting and fibrinolysis assays. Moreover, we show that citrullinated antithrombin and antiplasmin are increased and decreased in a deep vein thrombosis (DVT) model, accounting for how SERPIN citrullination shifts the equilibrium toward thrombus formation. These data provide a direct link between increased citrullination and the risk of thrombosis in autoimmunity and indicate that aberrant SERPIN citrullination promotes pathological thrombus formation.


Asunto(s)
Antifibrinolíticos/farmacología , Antitrombinas/farmacología , Inactivadores Plasminogénicos/farmacología , Inhibidores de Serina Proteinasa/farmacología , Trombosis de la Vena/tratamiento farmacológico , Animales , Antifibrinolíticos/química , Antitrombinas/química , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Péptido Hidrolasas/metabolismo , Inactivadores Plasminogénicos/química , Inhibidores de Serina Proteinasa/química , Trombosis de la Vena/metabolismo
4.
Front Immunol ; 12: 683803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122445

RESUMEN

Neutrophil extracellular trap formation (NETosis) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome assembly are associated with a similar spectrum of human disorders. While NETosis is known to be regulated by peptidylarginine deiminase 4 (PAD4), the role of the NLRP3 inflammasome in NETosis was not addressed. Here, we establish that under sterile conditions the cannonical NLRP3 inflammasome participates in NETosis. We show apoptosis-associated speck-like protein containing a CARD (ASC) speck assembly and caspase-1 cleavage in stimulated mouse neutrophils without LPS priming. PAD4 was needed for optimal NLRP3 inflammasome assembly by regulating NLRP3 and ASC protein levels post-transcriptionally. Genetic ablation of NLRP3 signaling resulted in impaired NET formation, because NLRP3 supported both nuclear envelope and plasma membrane rupture. Pharmacological inhibition of NLRP3 in either mouse or human neutrophils also diminished NETosis. Finally, NLRP3 deficiency resulted in a lower density of NETs in thrombi produced by a stenosis-induced mouse model of deep vein thrombosis. Altogether, our results indicate a PAD4-dependent formation of the NLRP3 inflammasome in neutrophils and implicate NLRP3 in NETosis under noninfectious conditions in vitro and in vivo.


Asunto(s)
Trampas Extracelulares/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Neutrófilos/enzimología , Animales , Caspasa 1/farmacología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Neutrófilos/efectos de los fármacos , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Trombosis de la Vena/sangre , Trombosis de la Vena/enzimología , Trombosis de la Vena/genética
6.
Cell Rep ; 35(6): 109102, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979620

RESUMEN

Megakaryocytes (MKs), the precursors of blood platelets, are large, polyploid cells residing mainly in the bone marrow. We have previously shown that balanced signaling of the Rho GTPases RhoA and Cdc42 is critical for correct MK localization at bone marrow sinusoids in vivo. Using conditional RhoA/Cdc42 double-knockout (DKO) mice, we reveal here that RhoA/Cdc42 signaling is dispensable for the process of polyploidization in MKs but essential for cytoplasmic MK maturation. Proplatelet formation is virtually abrogated in the absence of RhoA/Cdc42 and leads to severe macrothrombocytopenia in DKO animals. The MK maturation defect is associated with downregulation of myosin light chain 2 (MLC2) and ß1-tubulin, as well as an upregulation of LIM kinase 1 and cofilin-1 at both the mRNA and protein level and can be linked to impaired MKL1/SRF signaling. Our findings demonstrate that MK endomitosis and cytoplasmic maturation are separately regulated processes, and the latter is critically controlled by RhoA/Cdc42.


Asunto(s)
Citoplasma/metabolismo , Megacariocitos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Humanos , Ratones , Transducción de Señal
7.
J Thromb Haemost ; 19(2): 387-399, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33058430

RESUMEN

PURPOSE: Platelets are known to play an important role in venous thrombogenesis, but their role in thrombus maturation, resolution, and postthrombotic vein wall remodeling is unclear. The purpose of this study was to determine the role that circulating platelets play in the later phases of venous thrombosis. METHODS: We used a murine inferior vena cava (IVC) stenosis model. Baseline studies in untreated mice were performed to determine an optimal postthrombotic time point for tissue harvest that would capture both thrombus maturation/resolution and postthrombotic vein wall remodeling. This time point was found to be postoperative day 10. After undergoing IVC ultrasound on day 2 to confirm venous thrombus formation, mice were treated with a daily injection of platelet-depleting antibody (anti-GP1bα) to maintain thrombocytopenia or with control IgG until postoperative day 10, at which time IVC and thrombi were harvested and thrombus length, volume, fibrosis, neovascularization, and smooth muscle cell invasion analyzed. Vein wall fibrosis and intimal thickening were also determined. RESULTS: Mice that were made thrombocytopenic after venous thrombogenesis had thrombi that were less fibrotic, with fewer invading smooth muscle cells. Furthermore, thrombocytopenia in the setting of venous thrombosis resulted in less postthrombotic vein wall intimal thickening. Thrombus volume did not differ between thrombocytopenic mice and their control peers. CONCLUSIONS: This work suggests that circulating platelets contribute to venous thrombus maturation, fibrosis, and adverse vein wall remodeling, and that that inhibition of platelet recruitment may decrease thrombus and vein wall fibrosis, thus helping thrombolysis and preventing postthrombotic syndrome.


Asunto(s)
Vena Cava Inferior , Trombosis de la Vena , Animales , Plaquetas , Modelos Animales de Enfermedad , Fibrosis , Ratones , Vena Cava Inferior/diagnóstico por imagen , Vena Cava Inferior/patología , Trombosis de la Vena/patología
8.
J Thromb Haemost ; 18(12): 3194-3202, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32810892

RESUMEN

BACKGROUND: Hemophilia B is caused by coagulation factor IX (FIX) deficiency. Recombinant fusion protein linking coagulation FIX with recombinant albumin (rIX-FP; Idelvion® ) is used for replacement therapy with an extended half-life. A previous quantitative whole-body autoradiography (QWBA) study investigating the biodistribution of rIX-FP indicated equal biodistribution, but more prolonged tissue retention compared with a marketed recombinant FIX product. OBJECTIVES: To complete and confirm the QWBA study data by directly measuring rIX-FP protein and activity levels in tissues following intravenous (i.v.) administration to normal rats and FIX-deficient (hemophilia B) mice. METHODS: After i.v. administration of rIX-FP at a dose of 2000 IU/kg, animals were euthanized at specific time points up to 72 hours postdosing. Subsequently, plasma and various tissues, which were selected based on the previous QWBA results, were harvested and analyzed for FIX antigen levels using an ELISA (both species) or an immunohistochemistry method (mice only), as well as for FIX activity levels (mice only) using a chromogenic assay. RESULTS: In rats, rIX-FP distributed extravascularly into all tissues analyzed (ie, liver, kidney, skin and knee) with peak antigen levels reached between 1 and 7 hours postdosing. In hemophilia B mice, rIX-FP tissue distribution was comparable to rats. FIX antigen levels correlated well with FIX activity readouts. CONCLUSIONS: Our results confirm QWBA data showing that rIX-FP distributes into relevant target tissues. Importantly, it was demonstrated that rIX-FP available in tissues retains its functional activity and can thus facilitate its therapeutic activity at sites of potential injury.


Asunto(s)
Hemofilia B , Roedores , Administración Intravenosa , Animales , Factor IX/metabolismo , Semivida , Hemofilia B/tratamiento farmacológico , Ratones , Ratas , Proteínas Recombinantes de Fusión/uso terapéutico , Roedores/metabolismo , Distribución Tisular
9.
Circ Res ; 125(4): 470-488, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31518165

RESUMEN

Neutrophils play a central role in innate immune defense. Advances in neutrophil biology have brought to light the capacity of neutrophils to release their decondensed chromatin and form large extracellular DNA networks called neutrophil extracellular traps (NETs). NETs are produced in response to many infectious and noninfectious stimuli and, together with fibrin, block the invasion of pathogens. However, their formation in inflamed blood vessels produces a scaffold that supports thrombosis, generates neo-antigens favoring autoimmunity, and aggravates damage in ischemia/reperfusion injury. NET formation can also be induced by cancer and promotes tumor progression. Formation of NETs within organs can be immediately detrimental, such as in lung alveoli, where they affect respiration, or they can be harmful over longer periods of time. For example, NETs initiate excessive deposition of collagen, resulting in fibrosis, thus likely contributing to heart failure. Here, we summarize the latest knowledge on NET generation and discuss how excessive NET formation mediates propagation of thrombosis and inflammation and, thereby, contributes to various diseases. There are many ways in which NET formation could be averted or NETs neutralized to prevent their detrimental consequences, and we will provide an overview of these possibilities.


Asunto(s)
Aterosclerosis/etiología , Enfermedades Autoinmunes/etiología , Trampas Extracelulares/inmunología , Enfermedades Pulmonares/etiología , Trombosis/etiología , Animales , Trampas Extracelulares/enzimología , Trampas Extracelulares/genética , Humanos , Metaboloma
10.
Blood ; 134(17): 1458-1468, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31300403

RESUMEN

Deep vein thrombosis (DVT) is a common cardiovascular disease with a major effect on quality of life, and safe and effective therapeutic measures to efficiently reduce existent thrombus burden are scarce. Using a comprehensive targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics approach, we established temporal clusters of endogenously biosynthesized specialized proresolving mediators (SPMs) and proinflammatory and prothrombotic lipid mediators during DVT progression in mice. Administration of resolvin D4 (RvD4), an SPM that was enriched at the natural onset of thrombus resolution, significantly reduced thrombus burden, with significantly less neutrophil infiltration and more proresolving monocytes in the thrombus, as well as an increased number of cells in an early apoptosis state. Moreover, RvD4 promoted the biosynthesis of other D-series resolvins involved in facilitating resolution of inflammation. Neutrophils from RvD4-treated mice were less susceptible to an ionomycin-induced release of neutrophil extracellular traps (NETs), a meshwork of decondensed chromatin lined with histones and neutrophil proteins critical for DVT development. These results suggest that delivery of SPMs, specifically RvD4, modulates the severity of thrombo-inflammatory disease in vivo and improves thrombus resolution.


Asunto(s)
Ácidos Grasos Insaturados/uso terapéutico , Trombosis de la Vena/tratamiento farmacológico , Animales , Progresión de la Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Mediadores de Inflamación/inmunología , Lípidos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila/efectos de los fármacos , Trombosis de la Vena/inmunología , Trombosis de la Vena/patología
11.
Circ Res ; 125(5): 507-519, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31248335

RESUMEN

RATIONALE: PAD4 (peptidylarginine deiminase type IV), an enzyme essential for neutrophil extracellular trap formation (NETosis), is released together with neutrophil extracellular traps into the extracellular milieu. It citrullinates histones and holds the potential to citrullinate other protein targets. While NETosis is implicated in thrombosis, the impact of the released PAD4 is unknown. OBJECTIVE: This study tests the hypothesis that extracellular PAD4, released during inflammatory responses, citrullinates plasma proteins, thus affecting thrombus formation. METHODS AND RESULTS: Here, we show that injection of r-huPAD4 in vivo induces the formation of VWF (von Willebrand factor)-platelet strings in mesenteric venules and that this is dependent on PAD4 enzymatic activity. VWF-platelet strings are naturally cleaved by ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type-1 motif-13). We detected a reduction of endogenous ADAMTS13 activity in the plasma of wild-type mice injected with r-huPAD4. Using mass spectrometry and in vitro studies, we found that r-huPAD4 citrullinates ADAMTS13 on specific arginine residues and that this modification dramatically inhibits ADAMTS13 enzymatic activity. Elevated citrullination of ADAMTS13 was observed in plasma samples of patients with sepsis or noninfected patients who were elderly (eg, age >65 years) and had underlying comorbidities (eg, diabetes mellitus and hypertension) as compared with healthy donors. This shows that ADAMTS13 is citrullinated in vivo. VWF-platelet strings that form on venules of Adamts13-/- mice were immediately cleared after injection of r-huADAMTS13, while they persisted in vessels of mice injected with citrullinated r-huADAMTS13. Next, we assessed the effect of extracellular PAD4 on platelet-plug formation after ferric chloride-induced injury of mesenteric venules. Administration of r-huPAD4 decreased time to vessel occlusion and significantly reduced thrombus embolization. CONCLUSIONS: Our data indicate that PAD4 in circulation reduces VWF-platelet string clearance and accelerates the formation of a stable platelet plug after vessel injury. We propose that this effect is, at least in part, due to ADAMTS13 inhibition.


Asunto(s)
Plaquetas/metabolismo , Arginina Deiminasa Proteína-Tipo 4/sangre , Trombosis/sangre , Lesiones del Sistema Vascular/sangre , Factor de von Willebrand/metabolismo , Anciano , Animales , Plaquetas/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Arginina Deiminasa Proteína-Tipo 4/toxicidad , Trombosis/inducido químicamente , Lesiones del Sistema Vascular/inducido químicamente , Adulto Joven
12.
Platelets ; 30(1): 9-16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29913074

RESUMEN

Megakaryocytes differentiate from hematopoietic stem cells in the bone marrow. The transition of megakaryocytes to platelets is a complex process. Thereby, megakaryocytes extend proplatelets into sinusoidal blood vessels, where the proplatelets undergo fission to release platelets. Defects in platelet production can lead to a low platelet count (thrombocytopenia) with increased bleeding risk. Rho GTPases comprise a family of small signaling G proteins that have been shown to be master regulators of the cytoskeleton controlling many aspects of intracellular processes. The generation of Pf4-Cre transgenic mice was a major breakthrough that enabled studies in megakaryocyte-/platelet-specific knockout mouse lines and provided new insights into the central regulatory role of Rho GTPases in megakaryocyte maturation and platelet production. In this review, we will summarize major findings on the role of Rho GTPases in megakaryocyte biology with a focus on mouse lines in which knockout strategies have been applied to study the function of the best-characterized members Rac1, Cdc42 and RhoA and their downstream effector proteins.


Asunto(s)
Megacariocitos/fisiología , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Animales , Biomarcadores , Plaquetas/metabolismo , Citoesqueleto/metabolismo , Humanos , Trombopoyesis
13.
Sci Transl Med ; 10(436)2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643232

RESUMEN

Thrombosis is a major cause of morbidity and mortality in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), clonal disorders of hematopoiesis characterized by activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling. Neutrophil extracellular trap (NET) formation, a component of innate immunity, has been linked to thrombosis. We demonstrate that neutrophils from patients with MPNs are primed for NET formation, an effect blunted by pharmacological inhibition of JAK signaling. Mice with conditional knock-in of Jak2V617F, the most common molecular driver of MPN, have an increased propensity for NET formation and thrombosis. Inhibition of JAK-STAT signaling with the clinically available JAK2 inhibitor ruxolitinib abrogated NET formation and reduced thrombosis in a deep vein stenosis murine model. We further show that expression of PAD4, a protein required for NET formation, is increased in JAK2V617F-expressing neutrophils and that PAD4 is required for Jak2V617F-driven NET formation and thrombosis in vivo. Finally, in a population study of more than 10,000 individuals without a known myeloid disorder, JAK2V617F-positive clonal hematopoiesis was associated with an increased incidence of thrombosis. In aggregate, our results link JAK2V617F expression to NET formation and thrombosis and suggest that JAK2 inhibition may reduce thrombosis in MPNs through cell-intrinsic effects on neutrophil function.


Asunto(s)
Trampas Extracelulares/metabolismo , Neoplasias Hematológicas/metabolismo , Trastornos Mieloproliferativos/metabolismo , Trombosis/metabolismo , Animales , Estudios de Casos y Controles , Proliferación Celular/fisiología , Femenino , Neoplasias Hematológicas/tratamiento farmacológico , Hidrolasas/metabolismo , Janus Quinasa 2/metabolismo , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/metabolismo , Ratones , Trastornos Mieloproliferativos/tratamiento farmacológico , Nitrilos , Arginina Deiminasa Proteína-Tipo 4 , Pirazoles/uso terapéutico , Pirimidinas , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología , Trombosis/tratamiento farmacológico
14.
Blood ; 131(10): 1106-1110, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29295843

RESUMEN

At sites of vascular injury, exposed subendothelial collagens trigger platelet activation and thrombus formation by interacting with the immunoreceptor tyrosine-based activation motif (ITAM)-coupled glycoprotein VI (GPVI) on the platelet surface. Platelets are derived from the cytoplasm of megakaryocytes (MKs), which extend large proplatelets into bone marrow (BM) sinusoids that are then released into the bloodstream, where final platelet sizing and maturation occurs. The mechanisms that prevent activation of MKs and forming proplatelets in the collagen-rich BM environment remain largely elusive. Here, we demonstrate that newly formed young platelets (NFYPs) released after antibody-mediated thrombocytopenia in mice display a severe and highly selective signaling defect downstream of GPVI resulting in impaired collagen-dependent activation and thrombus formation in vitro and in vivo. The diminished GPVI signaling in NFYPs is linked to reduced phosphorylation of key downstream signaling proteins, including Syk, LAT, and phospholipase Cγ2, whereas the G protein-coupled receptor and C-type lectin-like receptor 2 signaling pathways remained unaffected. This GPVI signaling defect was overcome once the platelet counts were restored to normal in the circulation. Overall, these results indicate that the GPVI-ITAM signaling machinery in NFYPs after antibody-mediated thrombocytopenia only becomes fully functional in the blood circulation.


Asunto(s)
Plaquetas/metabolismo , Microambiente Celular , Megacariocitos/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Transducción de Señal , Trombocitopenia/metabolismo , Enfermedad Aguda , Animales , Plaquetas/patología , Masculino , Megacariocitos/patología , Ratones , Fosfolipasa C gamma/metabolismo , Quinasa Syk/metabolismo , Trombocitopenia/patología
15.
PLoS One ; 12(12): e0188341, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29236713

RESUMEN

Inflammation is a common denominator in chronic diseases of aging. Yet, how inflammation fuels these diseases remains unknown. Neutrophils are the primary leukocytes involved in the early phase of innate immunity and inflammation. As part of their anti-microbial defense, neutrophils form extracellular traps (NETs) by releasing decondensed chromatin lined with cytotoxic proteins. NETs have been shown to induce tissue injury and thrombosis. Here, we demonstrated that Sirt3, a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, an enzyme linked to human longevity, was expressed in mouse neutrophils and platelets. Using Sirt3-/- mice as a model of accelerated aging, we investigated the effects of Sirt3 deficiency on NETosis and platelet function, aiming to detect enhancement of thrombosis. More mitochondrial reactive oxygen species (ROS) were generated in neutrophils and platelets of Sirt3-/- mice compared to WT, when stimulated with a low concentration of phorbol 12-myristate 13-acetate (PMA) and a high concentration of thrombin, respectively. There were no differences in in vitro NETosis, with or without stimulation. Platelet aggregation was mildly augmented in Sirt3-/- mice compared to WT mice, when stimulated with a low concentration of collagen. The effect of Sirt3 deficiency on platelet and neutrophil activation in vivo was examined by the venous thrombosis model of inferior vena cava stenosis. Elevation of plasma DNA concentration was observed after stenosis in both genotypes, but no difference was shown between the two genotypes. The systemic response to thrombosis was enhanced in Sirt3-/- mice with significantly elevated neutrophil count and reduced platelet count. However, no differences were observed in incidence of thrombus formation, thrombus weight and thrombin-antithrombin complex generation between WT and Sirt3-/- mice. We conclude that Sirt3 does not considerably impact NET formation, platelet function, or venous thrombosis in healthy young mice.


Asunto(s)
Plaquetas/metabolismo , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/fisiología , Trombosis de la Vena/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Sirtuina 3/genética
16.
Blood ; 130(20): 2224-2228, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-28835437

RESUMEN

C-type lectin-like receptor 2 (CLEC-2) is a platelet receptor that is critical during development in blood-lymph separation and implicated in thrombus stability in thrombosis and hemostasis. It is the only known platelet activatory receptor that participates in both of these aspects of platelet function, and it is the only one to signal through a hemi-immunoreceptor tyrosine-based activation motif (hemITAM). Current investigations into the function of CLEC-2 in vivo have focused on knockout (KO) studies in which both the receptor and its signaling are deleted, making it impossible to explore the possible signaling-independent functions of the receptor, which are indicated by its only known physiological ligand, podoplanin, being an integral membrane protein. In this report, we present a novel knockin mouse model that maintains the expression of a CLEC-2 receptor that cannot signal through its hemITAM (Y7A KI). Remarkably, this mouse phenocopies the blood-lymphatic mixing and lethality of CLEC-2 KO models, but not their hemostatic/thrombotic defect. However, treatment of Y7A KI mice with Fab' fragments of the function-blocking anti-CLEC-2 antibody, INU1, resulted in a thrombus formation defect in vivo and ex vivo, revealing a hemITAM signaling-independent role for CLEC-2 in hemostasis and thrombosis.


Asunto(s)
Hemostasis , Lectinas Tipo C/fisiología , Transducción de Señal , Trombosis , Animales , Plaquetas/metabolismo , Técnicas de Sustitución del Gen , Motivo de Activación del Inmunorreceptor Basado en Tirosina , Lectinas Tipo C/genética , Sistema Linfático/patología , Ratones , Activación Plaquetaria
17.
Nat Commun ; 8: 15838, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28643773

RESUMEN

Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.


Asunto(s)
Plaquetas/enzimología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Plaquetas/citología , Polaridad Celular , Células Endoteliales/citología , Células Endoteliales/enzimología , Femenino , Humanos , Megacariocitos/citología , Megacariocitos/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rhoA/genética
18.
J Exp Med ; 214(2): 439-458, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28031479

RESUMEN

Aging promotes inflammation, a process contributing to fibrosis and decline in organ function. The release of neutrophil extracellular traps (NETs [NETosis]), orchestrated by peptidylarginine deiminase 4 (PAD4), damages organs in acute inflammatory models. We determined that NETosis is more prevalent in aged mice and investigated the role of PAD4/NETs in age-related organ fibrosis. Reduction in fibrosis was seen in the hearts and lungs of aged PAD4-/- mice compared with wild-type (WT) mice. An increase in left ventricular interstitial collagen deposition and a decline in systolic and diastolic function were present only in WT mice, and not in PAD4-/- mice. In an experimental model of cardiac fibrosis, cardiac pressure overload induced NETosis and significant platelet recruitment in WT but not PAD4-/- myocardium. DNase 1 was given to assess the effects of extracellular chromatin. PAD4 deficiency or DNase 1 similarly protected hearts from fibrosis. We propose a role for NETs in cardiac fibrosis and conclude that PAD4 regulates age-related organ fibrosis and dysfunction.


Asunto(s)
Hidrolasas/fisiología , Miocardio/patología , Factores de Edad , Animales , Colágeno/metabolismo , Trampas Extracelulares/fisiología , Fibrosis , Hidrolasas/genética , Ratones , Ratones Endogámicos C57BL , Arginina Deiminasa Proteína-Tipo 4 , Fibrosis Pulmonar/etiología , Especies Reactivas de Oxígeno/metabolismo , Función Ventricular Izquierda
19.
Proc Natl Acad Sci U S A ; 112(20): 6491-6, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25944935

RESUMEN

Platelets are crucial for hemostasis and thrombosis and exacerbate tissue injury following ischemia and reperfusion. Important regulators of platelet function are G proteins controlled by seven transmembrane receptors. The Gi protein Gα(i2) mediates platelet activation in vitro, but its in vivo role in hemostasis, arterial thrombosis, and postischemic infarct progression remains to be determined. Here we show that mice lacking Gα(i2) exhibit prolonged tail-bleeding times and markedly impaired thrombus formation and stability in different models of arterial thrombosis. We thus generated mice selectively lacking Gα(i2) in megakaryocytes and platelets (Gna(i2)(fl/fl)/PF4-Cre mice) and found bleeding defects comparable to those in global Gα(i2)-deficient mice. To examine the impact of platelet Gα(i2) in postischemic thrombo-inflammatory infarct progression, Gna(i2)(fl/fl)/PF4-Cre mice were subjected to experimental models of cerebral and myocardial ischemia/reperfusion injury. In the model of transient middle cerebral artery occlusion stroke Gna(i2)(fl/fl)/PF4-Cre mice developed significantly smaller brain infarcts and fewer neurological deficits than littermate controls. Following myocardial ischemia, Gna(i2)(fl/fl)/PF4-Cre mice showed dramatically reduced reperfusion injury which correlated with diminished formation of the ADP-dependent platelet neutrophil complex. In conclusion, our data provide definitive evidence that platelet Gα(i2) not only controls hemostatic and thrombotic responses but also is critical for the development of ischemia/reperfusion injury in vivo.


Asunto(s)
Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Infarto de la Arteria Cerebral Media/fisiopatología , Inflamación/fisiopatología , Activación Plaquetaria/fisiología , Daño por Reperfusión/fisiopatología , Trombosis/fisiopatología , Animales , Tiempo de Sangría , Plaquetas/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/deficiencia , Immunoblotting , Megacariocitos/metabolismo , Ratones , Daño por Reperfusión/prevención & control
20.
Blood ; 125(1): 185-94, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25301707

RESUMEN

Glycoprotein VI and C-type lectin-like receptor 2 are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease, which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter proteins (SLAP and SLAP2) are involved in the regulation of immune cell surface expression and signaling, but their function in platelets is unknown. In this study, we show that platelets expressed both SLAP isoforms and that overexpression of either protein in a heterologous cell line almost completely inhibited glycoprotein VI and C-type lectin-like receptor 2 signaling. In mice, single deficiency of SLAP or SLAP2 had only moderate effects on platelet function, whereas double deficiency of both adapters resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity, and thrombin generation in response to (hem)ITAM-coupled, but not G protein-coupled, receptor activation. In vivo, constitutive SLAP/SLAP2 knockout mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. This was attributed to the absence of both adapter proteins in platelets, as demonstrated by adoptive transfer of Slap(-/-)/Slap2(-/-) platelets into wild-type mice. Our results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Infarto Encefálico/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal , Trombosis/metabolismo , Secuencias de Aminoácidos , Animales , Plaquetas/citología , Arterias Carótidas/patología , Membrana Celular/metabolismo , Venenos de Crotálidos/química , Inflamación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lectinas Tipo C/química , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Arteria Cerebral Media/patología , Fosfoproteínas/metabolismo , Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Venenos de Serpiente/química , Quinasa Syk
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA