Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prog Nucl Magn Reson Spectrosc ; 122: 23-41, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33632416

RESUMEN

Despite intensive research, brain tumors are amongst the malignancies with the worst prognosis; therefore, a prompt diagnosis and thoughtful assessment of the disease is required. The resistance of brain tumors to most forms of conventional therapy has led researchers to explore the underlying biology in search of new vulnerabilities and biomarkers. The unique metabolism of brain tumors represents one potential vulnerability and the basis for a system of classification. Profiling this aberrant metabolism requires a method to accurately measure and report differences in metabolite concentrations. Magnetic resonance-based techniques provide a framework for examining tumor tissue and the evolution of disease. Nuclear Magnetic Resonance (NMR) analysis of biofluids collected from patients suffering from brain cancer can provide biological information about disease status. In particular, urine and plasma can serve to monitor the evolution of disease through the changes observed in the metabolic profiles. Moreover, cerebrospinal fluid can be utilized as a direct reporter of cerebral activity since it carries the chemicals exchanged with the brain tissue and the tumor mass. Metabolic reprogramming has recently been included as one of the hallmarks of cancer. Accordingly, the metabolic rewiring experienced by these tumors to sustain rapid growth and proliferation can also serve as a potential therapeutic target. The combination of 13C tracing approaches with the utilization of different NMR spectral modalities has allowed investigations of the upregulation of glycolysis in the aggressive forms of brain tumors, including glioblastomas, and the discovery of the utilization of acetate as an alternative cellular fuel in brain metastasis and gliomas. One of the major contributions of magnetic resonance to the assessment of brain tumors has been the non-invasive determination of 2-hydroxyglutarate (2HG) in tumors harboring a mutation in isocitrate dehydrogenase 1 (IDH1). The mutational status of this enzyme already serves as a key feature in the clinical classification of brain neoplasia in routine clinical practice and pilot studies have established the use of in vivo magnetic resonance spectroscopy (MRS) for monitoring disease progression and treatment response in IDH mutant gliomas. However, the development of bespoke methods for 2HG detection by MRS has been required, and this has prevented the wider implementation of MRS methodology into the clinic. One of the main challenges for improving the management of the disease is to obtain an accurate insight into the response to treatment, so that the patient can be promptly diverted into a new therapy if resistant or maintained on the original therapy if responsive. The implementation of 13C hyperpolarized magnetic resonance spectroscopic imaging (MRSI) has allowed detection of changes in tumor metabolism associated with a treatment, and as such has been revealed as a remarkable tool for monitoring response to therapeutic strategies. In summary, the application of magnetic resonance-based methodologies to the diagnosis and management of brain tumor patients, in addition to its utilization in the investigation of its tumor-associated metabolic rewiring, is helping to unravel the biological basis of malignancies of the central nervous system.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Humanos , Isocitrato Deshidrogenasa , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
2.
Cancers (Basel) ; 12(6)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575619

RESUMEN

Understanding the metabolic reprogramming of aggressive brain tumors has potential applications for therapeutics as well as imaging biomarkers. However, little is known about the nutrient requirements of isocitrate dehydrogenase 1 (IDH1) mutant gliomas. The IDH1 mutation involves the acquisition of a neomorphic enzymatic activity which generates D-2-hydroxyglutarate from α-ketoglutarate. In order to gain insight into the metabolism of these malignant brain tumors, we conducted metabolic profiling of the orthotopic tumor and the contralateral regions for the mouse model of IDH1 mutant glioma; as well as to examine the utilization of glucose and glutamine in supplying major metabolic pathways such as glycolysis and tricarboxylic acid (TCA). We also revealed that the main substrate of 2-hydroxyglutarate is glutamine in this model, and how this re-routing impairs its utilization in the TCA. Our 13C tracing analysis, along with hyperpolarized magnetic resonance experiments, revealed an active glycolytic pathway similar in both regions (tumor and contralateral) of the brain. Therefore, we describe the reprogramming of the central carbon metabolism associated with the IDH1 mutation in a genetically engineered mouse model which reflects the tumor biology encountered in glioma patients.

4.
Br J Pharmacol ; 165(4b): 1058-67, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21658022

RESUMEN

BACKGROUND AND PURPOSE: Inflammation and reactive oxygen species are associated with the promotion of various cancers. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in cancer prevention treatments has been promising in numerous cancers. We report the evaluation of NSAIDs chemically modified by the addition of a redox-active nitroxide group. TEMPO-aspirin (TEMPO-ASA) and TEMPO-indomethacin (TEMPO-IND) were synthesized and evaluated in the lung cancer cell line A549. EXPERIMENTAL APPROACHES: We evaluated physico-chemical properties of TEMPO-ASA and TEMPO-IND by electron paramagnetic resonance and cyclic voltammetry. Superoxide dismutase-like properties was assayed by measuring cytochrome c reduction and anti-inflammatory effects were assayed by measuring production of prostaglandin E(2) (PGE(2) ) and leukotriene B(4) (LTB(4) ). MTT proliferation assay and clonogenic assay were evaluated in the A549 lung carcinoma cell line. Maximum tolerated doses (MTD) and acute ulcerogenic index were also evaluated in in vivo. KEY RESULTS: MTD were: TEMPO (140 mg·kg(-1) ), ASA (100 mg·kg(-1) ), indomethacin (5 mg·kg(-1) ), TEMPO-ASA (100 mg·kg(-1) ) and TEMPO-IND (40 mg·kg(-1) ). While TEMPO-ASA was as well tolerated as ASA, TEMPO-IND showed an eightfold improvement over indomethacin. TEMPO-IND showed markedly less gastric toxicity than the parent NSAID. Both TEMPO-ASA and TEMPO-IND inhibited production of PGE(2) and LTB(4) in A549 cells with maximum effects at 100 µg·mL(-1) or 10 µg·mL(-1) respectively. CONCLUSIONS AND IMPLICATIONS: The nitroxide-NSAIDs retained superoxide scavenging capacity of the parent nitroxide and anti-inflammatory effects, inhibiting cyclooxygenase and 5-lipoxygenase enzymes. These redox-modified NSAIDs might be potential drug candidates, as they exhibit the pharmacological properties of the parent NSAID with antioxidant activity decreasing NSAID-associated toxicity.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Aspirina/farmacología , Óxidos N-Cíclicos/farmacología , Indometacina/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/toxicidad , Antioxidantes/química , Antioxidantes/toxicidad , Aspirina/química , Aspirina/toxicidad , Carragenina , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/toxicidad , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Edema/inducido químicamente , Edema/tratamiento farmacológico , Femenino , Humanos , Indometacina/química , Indometacina/toxicidad , Leucotrieno B4/metabolismo , Ratones , Ratones Desnudos , Ratas , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...