RESUMEN
This study queried the role of type V collagen in the post-natal growth of temporomandibular joint (TMJ) condylar cartilage, a hybrid tissue with a fibrocartilage layer covering a secondary hyaline cartilage layer. Integrating outcomes from histology, immunofluorescence imaging, electron microscopy and atomic force microscopy-based nanomechanical tests, we elucidated the impact of type V collagen reduction on TMJ condylar cartilage growth in the type V collagen haploinsufficiency and inducible knockout mice. Reduction of type V collagen led to significantly thickened collagen fibrils, decreased tissue modulus, reduced cell density and aberrant cell clustering in both the fibrous and hyaline layers. Post-natal growth of condylar cartilage involves the chondrogenesis of progenitor cells residing in the fibrous layer, which gives rise to the secondary hyaline layer. Loss of type V collagen resulted in reduced proliferation of these cells, suggesting a possible role of type V collagen in mediating the progenitor cell niche. When the knockout of type V collagen was induced in post-weaning mice after the start of physiologic TMJ loading, the hyaline layer exhibited pronounced thinning, supporting an interplay between type V collagen and occlusal loading in condylar cartilage growth. The phenotype in hyaline layer can thus be attributed to the impact of type V collagen on the mechanically regulated progenitor cell activities. In contrast, knee cartilage does not contain the progenitor cell population at post-natal stages, and develops normal structure and biomechanical properties with the loss of type V collagen. Therefore, in the TMJ, in addition to its established role in regulating the assembly of collagen I fibrils, type V collagen also impacts the mechanoregulation of progenitor cell activities in the fibrous layer. We expect such knowledge to establish a foundation for understanding condylar cartilage matrix development and regeneration, and to yield new insights into the TMJ symptoms in patients with classic Ehlers-Danlos syndrome, a genetic disease due to autosomal mutation of type V collagen.
Asunto(s)
Cartílago Articular , Colágeno Tipo V , Animales , Fenómenos Biomecánicos , Cartílago , Humanos , Hialina , Cóndilo Mandibular , Ratones , Articulación TemporomandibularRESUMEN
In cartilage tissue engineering, one key challenge is for regenerative tissue to recapitulate the biomechanical functions of native cartilage while maintaining normal mechanosensitive activities of chondrocytes. Thus, it is imperative to discern the micromechanobiological functions of the pericellular matrix, the ~ 2-4 µm-thick domain that is in immediate contact with chondrocytes. In this study, we discovered that decorin, a small leucine-rich proteoglycan, is a key determinant of cartilage pericellular matrix micromechanics and chondrocyte mechanotransduction in vivo. The pericellular matrix of decorin-null murine cartilage developed reduced content of aggrecan, the major chondroitin sulfate proteoglycan of cartilage and a mild increase in collagen II fibril diameter vis-à-vis wild-type controls. As a result, decorin-null pericellular matrix showed a significant reduction in micromodulus, which became progressively more pronounced with maturation. In alignment with the defects of pericellular matrix, decorin-null chondrocytes exhibited decreased intracellular calcium activities, [Ca2+]i, in both physiologic and osmotically evoked fluidic environments in situ, illustrating impaired chondrocyte mechanotransduction. Next, we compared [Ca2+]i activities of wild-type and decorin-null chondrocytes following enzymatic removal of chondroitin sulfate glycosaminoglycans. The results showed that decorin mediates chondrocyte mechanotransduction primarily through regulating the integrity of aggrecan network, and thus, aggrecan-endowed negative charge microenvironment in the pericellular matrix. Collectively, our results provide robust genetic and biomechanical evidence that decorin is an essential constituent of the native cartilage matrix, and suggest that modulating decorin activities could improve cartilage regeneration.
Asunto(s)
Cartílago Articular/fisiología , Decorina/genética , Matriz Extracelular/metabolismo , Mutación con Pérdida de Función , Agrecanos/metabolismo , Animales , Fenómenos Biomecánicos , Señalización del Calcio , Cartílago Articular/metabolismo , Femenino , Masculino , Mecanotransducción Celular , Ratones , RegeneraciónRESUMEN
The pericellular matrix (PCM) of cartilage is a structurally distinctive microdomain surrounding each chondrocyte, and is pivotal to cell homeostasis and cell-matrix interactions in healthy tissue. This study queried if the PCM is the initiation point for disease or a casualty of more widespread matrix degeneration. To address this question, we queried the mechanical properties of the PCM and chondrocyte mechanoresponsivity with the development of post-traumatic osteoarthritis (PTOA). To do so, we integrated Kawamoto's film-assisted cryo-sectioning with immunofluorescence-guided AFM nanomechanical mapping, and quantified the microscale modulus of murine cartilage PCM and further-removed extracellular matrix. Using the destabilization of the medial meniscus (DMM) murine model of PTOA, we show that decreases in PCM micromechanics are apparent as early as 3 days after injury, and that this precedes changes in the bulk ECM properties and overt indications of cartilage damage. We also show that, as a consequence of altered PCM properties, calcium mobilization by chondrocytes in response to mechanical challenge (hypo-osmotic stress) is significantly disrupted. These aberrant changes in chondrocyte micromechanobiology as a consequence of DMM could be partially blocked by early inhibition of PCM remodeling. Collectively, these results suggest that changes in PCM micromechanobiology are leading indicators of the initiation of PTOA, and that disease originates in the cartilage PCM. This insight will direct the development of early detection methods, as well as small molecule-based therapies that can stop early aberrant remodeling in this critical cartilage microdomain to slow or reverse disease progression. STATEMENT OF SIGNIFICANCE: Post-traumatic osteoarthritis (PTOA) is one prevalent musculoskeletal disease that afflicts young adults, and there are no effective strategies for early detection or intervention. This study identifies that the reduction of cartilage pericellular matrix (PCM) micromodulus is one of the earliest events in the initiation of PTOA, which, in turn, impairs the mechanosensitive activities of chondrocytes, contributing to the vicious loop of cartilage degeneration. Rescuing the integrity of PCM has the potential to restore normal chondrocyte mechanosensitive homeostasis and to prevent further degradation of cartilage. Our findings enable the development of early OA detection methods targeting changes in the PCM, and treatment strategies that can stop early aberrant remodeling in this critical microdomain to slow or reverse disease progression.
Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Condrocitos , Matriz Extracelular , Meniscos Tibiales , RatonesRESUMEN
Biological materials are superior to synthetic biomaterials in biocompatibility and active interactions with cells. Here, a new class of biological materials, cell membrane-derived hydrogel scaffolds are reported for harnessing these advantages. To form macroporous scaffolds, vesicles derived from red blood cell membranes (RBCMs) are chemically crosslinked via cryogelation. The RBCM scaffolds with a pore size of around 70⯵m are soft and injectable. Highly biocompatible scaffolds are typically made of superhydrophilic polymers and lack the ability to encapsulate and release hydrophobic drugs in a controlled manner. However, hydrophobic molecules can be efficiently encapsulated inside RBCM scaffolds and be sustainedly released. RBCM scaffolds show low neutrophil infiltration after subcutaneous injection in mice, and a significantly higher number of infiltrated macrophages than methacrylate alginate (MA-alginate) scaffolds. According to gene expression and surface markers, these macrophages have an M2-like phenotype, which is anti-inflammatory and immune suppressive. There are also higher percentages of macrophages presenting immunosuppressive PD-L1 in RBCM-scaffolds than in MA-alginate scaffolds. Interestingly, the concentrations of anti-inflammatory cytokine, IL-10 in both types of scaffolds are higher than those in normal organ tissues. This study sheds light on cell membrane-derived hydrogels, which can actively modulate cells in unique ways unavailable to existing hydrogel scaffolds.
Asunto(s)
Materiales Biocompatibles/química , Preparaciones de Acción Retardada/química , Membrana Eritrocítica/química , Andamios del Tejido/química , Animales , Células Cultivadas , Femenino , Macrófagos/citología , Ratones Endogámicos C57BL , Pirenos/administración & dosificación , Ingeniería de TejidosRESUMEN
Our objective is to provide an in-depth review of the recent technical advances of atomic force microscopy (AFM)-based nanomechanical tests and their contribution to a better understanding and diagnosis of osteoarthritis (OA), as well as the repair of tissues undergoing degeneration during OA progression. We first summarize a range of technical approaches for AFM-based nanoindentation, including considerations in both experimental design and data analysis. We then provide a more detailed description of two recently developed modes of AFM-nanoindentation, a high-bandwidth nanorheometer system for studying poroviscoelasticity and an immunofluorescence-guided nanomechanical mapping technique for delineating the pericellular matrix (PCM) and territorial/interterritorial matrix (T/IT-ECM) of surrounding cells in connective tissues. Next, we summarize recent applications of these approaches to three aspects of joint-related healthcare and disease: cartilage aging and OA, developmental biology and OA pathogenesis in murine models, and nanomechanics of the meniscus. These studies were performed over a hierarchy of length scales, from the molecular, cellular to the whole tissue level. The advances described here have contributed greatly to advancing the fundamental knowledge base for improved understanding, detection, and treatment of OA.
RESUMEN
Endorepellin, the C-terminal domain of perlecan, is an angiostatic molecule that acts as a potent inducer of autophagy via its interaction with VEGFR2. In this study, we examined the effect of endorepellin on endothelial cells using atomic force microscopy. Soluble endorepellin caused morphological and biophysical changes such as an increase in cell surface roughness and cell height. Surprisingly, these changes were not accompanied by alterations in the endothelial cell elastic modulus. We discovered that endorepellin-induced autophagic flux led to co-localization of mammalian target of rapamycin with LC3-positive autophagosomes. Endorepellin functioned upstream of AMP-activated kinase α, as compound C, an inhibitor of AMP-activated kinase α, abrogated endorepellin-mediated activation and co-localization of Beclin 1 and LC3, thereby reducing autophagic progression. Functionally, we discovered that both endorepellin and Torin 1, a canonical autophagic inducer, blunted ex vivo angiogenesis. We conclude that autophagy is a novel mechanism by which endorepellin promotes angiostasis independent of nutrient deprivation.
Asunto(s)
Autofagia , Proteoglicanos de Heparán Sulfato/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Fragmentos de Péptidos/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Adenilato Quinasa/metabolismo , Beclina-1/metabolismo , Módulo de Elasticidad , Células Endoteliales de la Vena Umbilical Humana/ultraestructura , Humanos , Lactosilceramidos/metabolismoRESUMEN
This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.