Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
J Nucl Med ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168519

RESUMEN

Radiolabeled small-molecule DOTA-haptens can be combined with antitumor/anti-DOTA bispecific antibodies (BsAbs) for pretargeted radioimmunotherapy (PRIT). For optimized delivery of the theranostic γ- and ß-emitting isotope 177Lu with DOTA-based PRIT (DOTA-PRIT), bivalent Gemini (DOTA-Bn-thiourea-PEG4-thiourea-Bn-DOTA, aka (3,6,9,12-tetraoxatetradecane-1,14-diyl)bis(DOTA-benzyl thiourea)) was developed. Methods: Gemini was synthesized by linking 2 S-2-(4-isothiocyanatobenzyl)-DOTA molecules together via a 1,14-diamino-PEG4 linker. [177Lu]Lu-Gemini was prepared with no-carrier-added 177LuCl3 to a molar-specific activity of 123 GBq/µmol and radiochemical purity of more than 99%. The specificity of BsAb-177Lu-Gemini was verified in vitro. Subsequently, we evaluated biodistribution and whole-body clearance for [177Lu]Lu-Gemini and, for comparison, our gold-standard monovalent [177Lu]Lu-S-2-(4-aminobenzyl)-DOTA ([177Lu]Lu-DOTA-Bn) in naïve (tumor-free) athymic nude mice. For our proof-of-concept system, a 3-step pretargeting approach was performed with an established DOTA-PRIT regimen (anti-GPA33/anti-DOTA IgG-scFv BsAb, a clearing agent, and [177Lu]Lu-Gemini) in mouse models. Results: Initial in vivo studies showed that [177Lu]Lu-Gemini behaved similarly to [177Lu]Lu-DOTA-Bn, with almost identical blood and whole-body clearance kinetics, as well as biodistribution and mouse kidney dosimetry. Pretargeting [177Lu]Lu-Gemini to GPA33-expressing SW1222 human colorectal xenografts was highly effective, leading to absorbed doses of [177Lu]Lu-Gemini for blood, tumor, liver, spleen, and kidneys of 3.99, 455, 6.93, 5.36, and 14.0 cGy/MBq, respectively. Tumor-to-normal tissue absorbed-dose ratios (i.e., therapeutic indices [TIs]) for the blood and kidneys were 114 and 33, respectively. In addition, we demonstrate that the use of bivalent [177Lu]Lu-Gemini in DOTA-PRIT leads to improved TIs and augmented [177Lu]Lu-Gemini tumor uptake and retention in comparison to monovalent [177Lu]Lu-DOTA-Bn. Finally, we established efficacy in SW1222 tumor-bearing mice, demonstrating that a single injection of anti-GPA33 DOTA-PRIT with 44 MBq (1.2 mCi) of [177Lu]Lu-Gemini (estimated tumor-absorbed dose, 200 Gy) induced complete responses in 5 of 5 animals and a histologic cure in 2 of 5 (40%) animals. Moreover, a significant increase in survival compared with nontreated controls was noted (maximum tolerated dose not reached). Conclusion: We have developed a bivalent DOTA-radiohapten, [177Lu]Lu-Gemini, that showed improved radiopharmacology for DOTA-PRIT application. The use of bivalent [177Lu]Lu-Gemini in DOTA-PRIT, as opposed to monovalent [177Lu]Lu-DOTA-Bn, allows curative treatments with considerably less administered 177Lu activity while still achieving high TIs for both the blood (>100) and the kidneys (>30).

2.
Front Cell Dev Biol ; 12: 1442488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139449

RESUMEN

Desmoplastic Small Round Cell Tumor (DSRCT) is a highly aggressive pediatric cancer caused by a reciprocal translocation between chromosomes 11 and 22, leading to the formation of the EWSR1::WT1 oncoprotein. DSRCT presents most commonly in the abdominal and pelvic peritoneum and remains refractory to current treatment regimens which include chemotherapy, radiotherapy, and surgery. As a rare cancer, sample and model availability have been a limiting factor to DSRCT research. However, the establishment of rare tumor banks and novel cell lines have recently propelled critical advances in the understanding of DSRCT biology and the identification of potentially promising targeted therapeutics. Here we review model and dataset availability, current understanding of the EWSR1::WT1 oncogenic mechanism, and promising preclinical therapeutics, some of which are now advancing to clinical trials. We discuss efforts to inhibit critical dependencies including NTRK3, EGFR, and CDK4/6 as well as novel immunotherapy strategies targeting surface markers highly expressed in DSRCT such as B7-H3 or neopeptides either derived from or driven by the fusion oncoprotein. Finally, we discuss the prospect of combination therapies and strategies for prioritizing clinical translation.

3.
J Clin Med ; 13(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39200906

RESUMEN

Immunotherapy has emerged as an attractive option for patients with relapsed or refractory high-risk neuroblastoma (HRNB). Neuroblastoma (NB), a sympathetic nervous system cancer arising from an embryonic neural crest cell, is heterogeneous clinically, with outcomes ranging from an isolated abdominal mass that spontaneously regresses to a widely metastatic disease with cure rates of about 50% despite intensive multimodal treatment. Risk group stratification and stage-adapted therapy to achieve cure with minimal toxicities have accomplished major milestones. Targeted immunotherapeutic approaches including monoclonal antibodies, vaccines, adoptive cellular therapies, their combinations, and their integration into standard of care are attractive therapeutic options, although curative challenges and toxicity concerns remain. In this review, we provide an overview of immune approaches to NB and the tumor microenvironment (TME) within the clinical translational framework. We propose a novel T cell-based therapeutic approach that leverages the unique properties of tumor surface antigens such as ganglioside GD2, incorporating specific monoclonal antibodies and recent advancements in adoptive cell therapy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39009446

RESUMEN

Children are surviving cancer in greater numbers than ever. Over the last 50 years, substantial advancements in pediatric cancer treatment have resulted in an 85% 5-year survival rate. Nonetheless, a notable 10%-15% of patients encounter relapse or develop refractory disease, leading to significantly lower survival. Recent attempts to further intensify cytotoxic chemotherapy have failed due to either severe toxicities or ineffectiveness, highlighting the need for new treatment strategies. Immunotherapies are emerging and expanding their clinical application to a wide array of cancers, including those affecting children. In pediatric cancers, monoclonal antibodies targeting GD2 have demonstrated durable radiographic and histologic responses in neuroblastoma (NB), and CD19-targeted bispecific antibodies (BsAbs) and chimeric antigen receptor (CAR) T cells have likewise changed the outlook for refractory acute lymphoblastic leukemia (ALL) in children. This review discusses the clinical development of immunotherapies for pediatric cancers, focusing on pediatric ALL and NB, two major pediatric cancers transformed by immunotherapy, updates on the recent advancements in immunotherapies, and further discusses the future directions of immunotherapy for pediatric cancers.

5.
Pediatr Blood Cancer ; 71(9): e31181, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38967225

RESUMEN

INTRODUCTION: Data on ovarian function in neuroblastoma survivors are limited. We sought to determine the prevalence of ovarian dysfunction in a cohort of high-risk neuroblastoma survivors and compare outcomes among survivors treated with and without autologous stem cell rescue (ASCR) preceded by myeloablative chemotherapy. METHODS: Retrospective review of female survivors of high-risk neuroblastoma ≥5 years from diagnosis, diagnosed between 1982 and 2014, and followed in a tertiary cancer center. Participants were divided into two groups: individuals treated with conventional chemotherapy ± radiation ("non-ASCR") (n = 32) or with chemotherapy ± radiation followed by myeloablative chemotherapy with ASCR ("ASCR") (n = 51). Ovarian dysfunction was defined as follicle-stimulating hormone ≥15 mU/mL, while premature ovarian insufficiency (POI) was defined as persistent ovarian dysfunction requiring hormone replacement therapy. Poisson models were used to determine prevalence ratios of ovarian dysfunction and POI. RESULTS: Among 83 females (median attained age: 19 years [range, 10-36]; median follow-up: 15 years [range, 7-36]), 49 (59%) had ovarian dysfunction, and 34 (41%) developed POI. Survivors treated with ASCR were 3.2-fold more likely to develop ovarian dysfunction (95% CI: 1.8-6.0; p < 0.001) and 4.5-fold more likely to develop POI (95% CI: 1.7-11.7; p = 0.002) when compared with those treated with conventional chemotherapy, after adjusting for attained age. Two participants in the non-ASCR group and six in the ASCR group achieved at least one spontaneous pregnancy. DISCUSSION: Ovarian dysfunction is prevalent in female high-risk neuroblastoma survivors, especially after ASCR. Longitudinal follow-up of larger cohorts is needed to inform counseling about the risk of impaired ovarian function after neuroblastoma therapy.


Asunto(s)
Supervivientes de Cáncer , Neuroblastoma , Insuficiencia Ovárica Primaria , Humanos , Femenino , Neuroblastoma/terapia , Adolescente , Estudios Retrospectivos , Supervivientes de Cáncer/estadística & datos numéricos , Adulto , Niño , Adulto Joven , Insuficiencia Ovárica Primaria/epidemiología , Insuficiencia Ovárica Primaria/etiología , Insuficiencia Ovárica Primaria/inducido químicamente , Estudios de Seguimiento , Ovario/efectos de los fármacos , Ovario/fisiopatología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Trasplante Autólogo
6.
Vaccines (Basel) ; 12(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38932316

RESUMEN

The carbohydrate ganglioside GD2/GD3 cancer vaccine adjuvanted by ß-glucan stimulates anti-GD2 IgG1 antibodies that strongly correlate with improved progression-free survival (PFS) and overall survival (OS) among patients with high-risk neuroblastoma. Thirty-two patients who relapsed on the vaccine (first enrollment) were re-treated on the same vaccine protocol (re-enrollment). Titers during the first enrollment peaked by week 32 at 751 ± 270 ng/mL, which plateaued despite vaccine boosts at 1.2-4.5 month intervals. After a median wash-out interval of 16.1 months from the last vaccine dose during the first enrollment to the first vaccine dose during re-enrollment, the anti-GD2 IgG1 antibody rose to a peak of 4066 ± 813 ng/mL by week 3 following re-enrollment (p < 0.0001 by the Wilcoxon matched-pairs signed-rank test). Yet, these peaks dropped sharply and continually despite repeated boosts at 1.2-4.5 month intervals, before leveling off by week 20 to the first enrollment peak levels. Despite higher antibody titers, patients experienced no pain or neuropathic side effects, which were typically associated with immunotherapy using monoclonal anti-GD2 antibodies. By the Kaplan-Meier method, PFS was estimated to be 51%, and OS was 81%. The association between IgG1 titer during re-enrollment and ß-glucan receptor dectin-1 SNP rs3901533 was significant (p = 0.01). A longer prime-boost interval could significantly improve antibody responses in patients treated with ganglioside conjugate cancer vaccines.

7.
Front Oncol ; 14: 1380917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812778

RESUMEN

Background: Anti-GD2 monoclonal antibodies (mAbs) have shown to improve the overall survival of patients with high-risk neuroblastoma (HR-NB). Serious adverse events (AEs), including pain, within hours of antibody infusion, have limited the development of these therapies. In this study, we provide evidence of Autonomic Nervous System (ANS) activation as the mechanism to explain the main side effects of anti-GD2 mAbs. Methods: Through confocal microscopy and computational super-resolution microscopy experiments we explored GD2 expression in postnatal nerves of infants. In patients we assessed the ANS using the Sympathetic Skin Response (SSR) test. To exploit tachyphylaxis, a novel infusion protocol (the Step-Up) was mathematically modelled and tested. Results: Through confocal microscopy, GD2 expression is clearly visible in the perineurium surrounding the nuclei of nerve cells. By computational super-resolution microscopy experiments we showed the selective expression of GD2 on the cell membranes of human Schwann cells in peripheral nerves (PNs) significantly lower than on NB. In patients, changes in the SSR were observed 4 minutes into the anti-GD2 mAb naxitamab infusion. SSR latency quickly shortened followed by gradual decrease in the amplitude before disappearance. SSR response did not recover for 24 hours consistent with tachyphylaxis and absence of side effects in the clinic. The Step-Up protocol dissociated on-target off-tumor side effects while maintaining serum drug exposure. Conclusion: We provide first evidence of the ANS as the principal non-tumor target of anti-GD2 mAbs in humans. We describe the development and modeling of the Step-Up protocol exploiting the tachyphylaxis phenomenon we demonstrate in patients using the SSR test.

8.
J Hematol Oncol ; 17(1): 20, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650005

RESUMEN

BACKGROUND: EGFR and/or HER2 expression in pancreatic cancers is correlated with poor prognoses. We generated homodimeric (EGFRxEGFR or HER2xHER2) and heterodimeric (EGFRxHER2) T cell-engaging bispecific antibodies (T-BsAbs) to direct polyclonal T cells to these antigens on pancreatic tumors. METHODS: EGFR and HER2 T-BsAbs were constructed using the 2 + 2 IgG-[L]-scFv T-BsAbs format bearing two anti-CD3 scFvs attached to the light chains of an IgG to engage T cells while retaining bivalent binding to tumor antigens with both Fab arms. A Fab arm exchange strategy was used to generate EGFRxHER2 heterodimeric T-BsAb carrying one Fab specific for EGFR and one for HER2. EGFR and HER2 T-BsAbs were also heterodimerized with a CD33 control T-BsAb to generate 'tumor-monovalent' EGFRxCD33 and HER2xCD33 T-BsAbs. T-BsAb avidity for tumor cells was studied by flow cytometry, cytotoxicity by T-cell mediated 51Chromium release, and in vivo efficacy against cell line-derived xenografts (CDX) or patient-derived xenografts (PDX). Tumor infiltration by T cells transduced with luciferase reporter was quantified by bioluminescence. RESULTS: The EGFRxEGFR, HER2xHER2, and EGFRxHER2 T-BsAbs demonstrated high avidity and T cell-mediated cytotoxicity against human pancreatic ductal adenocarcinoma (PDAC) cell lines in vitro with EC50s in the picomolar range (0.17pM to 18pM). They were highly efficient in driving human polyclonal T cells into subcutaneous PDAC xenografts and mediated potent T cell-mediated anti-tumor effects. Both EGFRxCD33 and HER2xCD33 tumor-monovalent T-BsAbs displayed substantially reduced avidity by SPR when compared to homodimeric EGFRxEGFR or HER2xHER2 T-BsAbs (∼150-fold and ∼6000-fold respectively), tumor binding by FACS (8.0-fold and 63.6-fold), and T-cell mediated cytotoxicity (7.7-fold and 47.2-fold), while showing no efficacy against CDX or PDX. However, if either EGFR or HER2 was removed from SW1990 by CRISPR-mediated knockout, the in vivo efficacy of heterodimeric EGFRxHER2 T-BsAb was lost. CONCLUSION: EGFR and HER2 were useful targets for driving T cell infiltration and tumor ablation. Two arm Fab binding to either one or both targets was critical for robust anti-tumor effect in vivo. By engaging both targets, EGFRxHER2 heterodimeric T-BsAb exhibited potent anti-tumor effects if CDX or PDX were EGFR+HER2+ double-positive with the potential to spare single-positive normal tissue.


Asunto(s)
Anticuerpos Biespecíficos , Carcinoma Ductal Pancreático , Receptores ErbB , Neoplasias Pancreáticas , Receptor ErbB-2 , Linfocitos T , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Humanos , Animales , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Linfocitos T/inmunología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Ratones , Receptores ErbB/inmunología , Receptor ErbB-2/inmunología , Línea Celular Tumoral , Dimerización , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones SCID
9.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38659858

RESUMEN

Natural Killer (NK) cells can recognize and kill Mtb-infected cells in vitro, however their role after natural human exposure has not been well-studied. To identify Mtb-responsive NK cell populations, we analyzed the peripheral blood of healthy household contacts of active Tuberculosis (TB) cases and source community donors in an endemic region of Port-au-Prince, Haiti by flow cytometry. We observed higher CD8α expression on NK cells in putative resistors (IGRA- contacts) with a progressive loss of these circulating cells during household-associated latent infection and disease. In vitro assays and CITE-seq analysis of CD8α+ NK cells demonstrated enhanced maturity, cytotoxic gene expression, and response to cytokine stimulation relative to CD8α- NK cells. CD8α+ NK cells also displayed dynamic surface expression dependent on MHC I in contrast to conventional CD8+ T cells. Together, these results support a specialized role for CD8α+ NK cell populations during Mtb infection correlating with disease resistance.

10.
J Immunother Cancer ; 12(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38519053

RESUMEN

BACKGROUND: The survival benefit observed in children with neuroblastoma (NB) and minimal residual disease who received treatment with anti-GD2 monoclonal antibodies prompted our investigation into the safety and potential clinical benefits of anti-CD3×anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs). Preclinical studies demonstrated the high cytotoxicity of GD2BATs against GD2+cell lines, leading to the initiation of a phase I/II study in recurrent/refractory patients. METHODS: The 3+3 dose escalation phase I study (NCT02173093) encompassed nine evaluable patients with NB (n=5), osteosarcoma (n=3), and desmoplastic small round cell tumors (n=1). Patients received twice-weekly infusions of GD2BATs at 40, 80, or 160×106 GD2BATs/kg/infusion complemented by daily interleukin-2 (300,000 IU/m2) and twice-weekly granulocyte macrophage colony-stimulating factor (250 µg/m2). The phase II segment focused on patients with NB at the dose 3 level of 160×106 GD2BATs/kg/infusion. RESULTS: Of the 12 patients enrolled, 9 completed therapy in phase I with no dose-limiting toxicities. Mild and manageable cytokine release syndrome occurred in all patients, presenting as grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody-associated pain was minimal. Median overall survival (OS) for phase I and the limited phase II was 18.0 and 31.2 months, respectively, with a combined OS of 21.1 months. A phase I NB patient had a complete bone marrow response with overall stable disease. In phase II, 10 of 12 patients were evaluable: 1 achieved partial response, and 3 showed clinical benefit with prolonged stable disease. Over 50% of evaluable patients exhibited augmented immune responses to GD2+targets post-GD2BATs, as indicated by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. CONCLUSIONS: This study demonstrated the safety of GD2BATs up to 160×106 cells/kg/infusion. Coupled with evidence of post-treatment endogenous immune responses, our findings support further investigation of GD2BATs in larger phase II clinical trials.


Asunto(s)
Antineoplásicos , Neuroblastoma , Osteosarcoma , Niño , Humanos , Linfocitos T/patología , Neuroblastoma/patología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Osteosarcoma/tratamiento farmacológico
11.
Res Sq ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986911

RESUMEN

Background: Since treatment of neuroblastoma (NB) with anti-GD2 monoclonal antibodies provides a survival benefit in children with minimal residual disease and our preclinical study shows that anti-CD3 x anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs) were highly cytotoxic to GD2+ cell lines, we conducted a phase I/II study in recurrent/refractory patients to establish safety and explore the clinical benefit of GD2BATs. Methods: The 3+3 dose escalation study (NCT02173093) phase I involved 9 evaluable patients with NB (n=5), osteosarcoma (OST) (n=3), and desmoplastic small round cell tumors (DSRCT) (n=1) with twice weekly infusions of GD2BATs at 40, 80, or 160 x 106 GD2BATs/kg/infusion with daily interleukin 2 (300,000 IU/m2) and twice weekly granulocyte-macrophage colony stimulating factor (250 µg/m2). Phase II portion of the trial was conducted in patients with NB at the dose 3 level of 160 x 106 GD2BATs/kg/infusion but failed to enroll the planned number of patients. Results: Nine of 12 patients in the phase I completed therapy. There were no dose limiting toxicities (DLTs). All patients developed mild and manageable cytokine release syndrome (CRS) with grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody associated pain was not significant in this study. The median OS for patients in the Phase I and limited Phase II was 18.0 and 31.2 months, respectively, whereas the combined OS was 21.1 months. There was a complete bone marrow response with overall stable disease in one of the phase I patients with NB. Ten of 12 phase II patients were evaluable for response: 1 had partial response. Three additional patients were deemed to have clinical benefit with prolonged stable disease. More than 50% of evaluable patients showed augmented immune responses to GD2+ targets after GD2BATs as measured by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. Conclusions: Our study demonstrated safety of up to 160 x 106 cells/kg/infusion of GD2BATs. Combined with evidence for the development of post treatment endogenous immune responses, this data supports further investigation of GD2 BATs in larger Phase II clinical trials.

12.
Theranostics ; 13(15): 5469-5482, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908719

RESUMEN

Rationale: The in vivo dynamics of CAR-T cells remain incompletely understood. Novel methods are urgently needed to longitudinally monitor transferred cells non-invasively for biodistribution, functionality, proliferation, and persistence in vivo and for improving their cytotoxic potency in case of treatment failure. Methods: Here we engineered CD19 CAR-T cells ("Thor"-cells) to express a membrane-bound scFv, huC825, that binds DOTA-haptens with picomolar affinity suitable for labeling with imaging or therapeutic radionuclides. We assess its versatile utility for serial tracking studies with PET and delivery of α-radionuclides to enhance anti-tumor killing efficacy in sub-optimal adoptive cell transfer in vivo using Thor-cells in lymphoma models. Results: We show that this reporter gene/probe platform enables repeated, sensitive, and specific assessment of the infused Thor-cells in the whole-body using PET/CT imaging with exceptionally high contrast. The uptake on PET correlates with the Thor-cells on a cellular and functional level. Furthermore, we report the ability of Thor-cells to accumulate cytotoxic alpha-emitting radionuclides preferentially at tumor sites, thus increasing therapeutic potency. Conclusion: Thor-cells are a new theranostic agent that may provide crucial information for better and safer clinical protocols of adoptive T cell therapies, as well as accelerated development strategies.


Asunto(s)
Antineoplásicos , Radioinmunoterapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular , Inmunoterapia Adoptiva/métodos , Radioisótopos/metabolismo , Antineoplásicos/metabolismo , Linfocitos T/metabolismo
13.
Methods Mol Biol ; 2702: 327-345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679628

RESUMEN

Antibodies that bind peptide-MHC (pMHC) complex in a manner akin to T cell receptor (TCR) have not only helped in understanding the mechanism of TCR-pMHC interactions in the context of T cell biology but also spurred considerable interest in recent years as potential cancer therapeutics. Traditional methods to generate such antibodies using hybridoma and B cell sorting technologies are sometimes inadequate, possibly due to the small contribution of peptide to the overall B cell epitope space on the surface of the pMHC complex (typical peptide MW = 1 kDa versus MHC MW = 45 kDa) and to the multiple efficiency limiting steps inherent in these methods. In this chapter we describe phage display approaches, including a cell panning strategy, for the rapid generation of such antibodies with high specificity and affinity.


Asunto(s)
Anticuerpos , Bacteriófagos , Linfocitos B , Movimiento Celular , Técnicas de Visualización de Superficie Celular , Antígenos de Histocompatibilidad
14.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37569894

RESUMEN

The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over the past decades despite the exploitation of multimodal treatment approaches, allowing long-term survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemotherapeutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as a complementary or alternative treatment modality is advancing rapidly in general, but its potential against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, osteosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells, neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summarize the challenges encountered, and explore combination strategies to overcome these hurdles, with the ultimate goal of curing osteosarcoma with less acute and long-term side effects.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Linfocitos T , Ecosistema , Recurrencia Local de Neoplasia , Inmunoterapia , Osteosarcoma/genética , Neoplasias Óseas/genética , Microambiente Tumoral , Inmunoterapia Adoptiva
15.
Int J Cancer ; 153(12): 2019-2031, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37602920

RESUMEN

Patients with stage 4N neuroblastoma (distant metastases limited to lymph nodes) stand out as virtually the only survivors of high-risk neuroblastoma (HR-NB) before myeloablative therapy (MAT) and immunotherapy with anti-GD2 monoclonal antibodies (mAbs) became standard. Because no report presents more recent results with 4N, we analyzed our large 4N experience. All 51 pediatric 4N patients (<18 years old) diagnosed 1985 to 2021 were reviewed. HR-NB included MYCN-nonamplified 4N diagnosed at age ≥18 months and MYCN-amplified 4N. Among 34 MYCN-nonamplified high-risk patients, 20 are relapse-free 1.5+ to 37.5+ (median 12.5+) years post-diagnosis, including 13 without prior MAT and 5 treated with little (1 cycle; n = 2) or no mAb (n = 3), while 14 patients (7 post-MAT, 8 post-mAbs) relapsed (all soft tissue). Of 15 MYCN-amplified 4N patients, 7 are relapse-free 2.1+ to 26.4+ (median 11.6+) years from the start of chemotherapy (all received mAbs; 3 underwent MAT) and 4 are in second remission 4.2+ to 21.8+ years postrelapse (all soft tissue). Statistical analyses showed no significant association of survival with either MAT or mAbs for MYCN-nonamplified HR-NB; small numbers prevented these analyses for MYCN-amplified patients. The two patients with intermediate-risk 4N (14-months-old) are relapse-free 7+ years postresection of primary tumors; distant disease spontaneously regressed. The natural history of 4N is marked by NB confined to soft tissue without early relapse in bones or bone marrow, where mAbs have proven efficacy. These findings plus curability without MAT, as seen elsewhere and at our center, support consideration of treatment reduction for MYCN-nonamplified 4N.


Asunto(s)
Recurrencia Local de Neoplasia , Neuroblastoma , Niño , Humanos , Lactante , Adolescente , Pronóstico , Proteína Proto-Oncogénica N-Myc/genética , Estadificación de Neoplasias , Recurrencia Local de Neoplasia/terapia , Recurrencia Local de Neoplasia/patología , Neuroblastoma/genética , Neuroblastoma/terapia , Inmunoterapia
16.
Sarcoma ; 2023: 6686702, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457440

RESUMEN

Desmoplastic small round cell tumor (DSRCT) is a rare pediatric cancer caused by the EWSR1-WT1 fusion oncogene. Despite initial response to chemotherapy, DSRCT has a recurrence rate of over 80% leading to poor patient prognosis with a 5-year survival rate of only 15-25%. Owing to the rarity of DSRCT, sample scarcity is a barrier in understanding DSRCT biology and developing effective therapies. Utilizing a novel pair of primary and recurrent DSRCTs, we present the first map of DSRCT genomic breakpoints and the first comparison of gene expression alterations between primary and recurrent DSRCT. Our genomic breakpoint map includes the lone previously published DSRCT genomic breakpoint, the breakpoint from our novel primary/recurrent DSRCT pair, as well as the breakpoints of five available DSRCT cell lines and five additional DSRCTs. All mapped breakpoints were unique and most breakpoints included a 1-3 base pair microhomology suggesting microhomology-mediated end-joining as the mechanism of translocation fusion and providing novel insights into the etiology of DSRCT. Through RNA-sequencing analysis, we identified altered genes and pathways between primary and recurrent DSRCTs. Upregulated pathways in the recurrent tumor included several DNA repair and mRNA splicing-related pathways, while downregulated pathways included immune system function and focal adhesion. We further found higher expression of the EWSR1-WT1 upregulated gene set in the recurrent tumor as compared to the primary tumor and lower expression of the EWSR1-WT1 downregulated gene set, suggesting the EWSR1-WT1 fusion continues to play a prominent role in recurrent tumors. The identified pathways including upregulation of DNA repair and downregulation of immune system function may help explain DSRCT's high rate of recurrence and can be utilized to improve the understanding of DSRCT biology and identify novel therapies to both help prevent recurrence and treat recurrent tumors.

17.
Cancers (Basel) ; 15(14)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37509390

RESUMEN

Monoclonal antibodies (mAbs), as the name implies, are clonal antibodies that bind to the same antigen. mAbs are broadly used as diagnostic or therapeutic tools for neoplasms, autoimmune diseases, allergic conditions, and infections. Although most mAbs are approved for treating adult cancers, few are applicable to childhood malignancies, limited mostly to hematological cancers. As for solid tumors, only anti-disialoganglioside (GD2) mAbs are approved specifically for neuroblastoma. Inequities of drug access have continued, affecting most therapeutic mAbs globally. To understand these challenges, a deeper dive into the complex transition from basic research to the clinic, or between marketing and regulatory agencies, is timely. This review focuses on current mAbs approved or under investigation in pediatric cancer, with special attention on solid tumors and anti-GD2 mAbs, and the hurdles that limit their broad global access. Beyond understanding the mechanisms of drug resistance, the continual discovery of next generation drugs safer for children and easier to administer, the discovery of predictive biomarkers to avoid futility should ease the acceptance by patient, health care professionals and regulatory agencies, in order to expand clinical utility. With a better integration into the multimodal treatment for each disease, protocols that align with the regional clinical practice should also improve acceptance and cost-effectiveness. Communication and collaboration between academic institutions, pharmaceutical companies, and regulatory agencies should help to ensure accessible, affordable, and sustainable health care for all.

18.
J Nucl Med ; 64(9): 1439-1445, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348919

RESUMEN

Epithelial ovarian cancer (EOC) is often asymptomatic and presents clinically in an advanced stage as widespread peritoneal microscopic disease that is generally considered to be surgically incurable. Targeted α-therapy with the α-particle-emitting radionuclide 225Ac (half-life, 9.92 d) is a high-linear-energy-transfer treatment approach effective for small-volume disease and even single cells. Here, we report the use of human epidermal growth factor receptor 2 (HER2) 225Ac-pretargeted radioimmunotherapy (PRIT) to treat a mouse model of human EOC SKOV3 xenografts growing as peritoneal carcinomatosis (PC). Methods: On day 0, 105 SKOV3 cells transduced with a luciferase reporter gene were implanted intraperitoneally in nude mice, and tumor engraftment was verified by bioluminescent imaging (BLI). On day 15, treatment was started using 1 or 2 cycles of 3-step anti-HER2 225Ac-PRIT (37 kBq/cycle as 225Ac-Proteus DOTA), separated by a 1-wk interval. Efficacy and toxicity were monitored for up to 154 d. Results: Untreated PC-tumor-bearing nude mice showed a median survival of 112 d. We used 2 independent measures of response to evaluate the efficacy of 225Ac-PRIT. First, a greater proportion of the treated mice (9/10 1-cycle and 8/10 2-cycle; total, 17/20; 85%) survived long-term compared with controls (9/27, 33%), and significantly prolonged survival was documented (log-rank [Mantel-Cox] P = 0.0042). Second, using BLI, a significant difference in the integrated BLI signal area to 98 d was noted between controls and treated groups (P = 0.0354). Of a total of 8 mice from the 2-cycle treatment group (74 kBq total) that were evaluated by necropsy, kidney radiotoxicity was mild and did not manifest itself clinically (normal serum blood urea nitrogen and creatinine). Dosimetry estimates (relative biological effectiveness-weighted dose, where relative biological effectiveness = 5) per 37 kBq administered for tumors and kidneys were 56.9 and 16.1 Gy, respectively. One-cycle and 2-cycle treatments were equally effective. With immunohistology, mild tubular changes attributable to α-toxicity were observed in both therapeutic groups. Conclusion: Treatment of EOC PC-tumor-bearing mice with anti-HER2 225Ac-PRIT resulted in histologic cures and prolonged survival with minimal toxicity. Targeted α-therapy using the anti-HER2 225Ac-PRIT system is a potential treatment for otherwise incurable EOC.


Asunto(s)
Neoplasias Peritoneales , Radioinmunoterapia , Humanos , Animales , Ratones , Radioinmunoterapia/métodos , Ratones Desnudos , Neoplasias Peritoneales/diagnóstico por imagen , Neoplasias Peritoneales/radioterapia , Neoplasias Peritoneales/tratamiento farmacológico , Radioisótopos/uso terapéutico , Línea Celular Tumoral
19.
J Vis Exp ; (195)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37246883

RESUMEN

T cell-engaging bispecific antibodies (T-BsAbs) are in various stages of preclinical development and clinical testing for solid tumors. Factors such as valency, spatial arrangement, interdomain distance, and Fc mutations affect the anti-tumor efficacy of these therapies, commonly by influencing the homing of T cells to tumors, which remains a major challenge. Here, we describe a method to transduce activated human T cells with luciferase, allowing in vivo tracking of T cells during T-BsAb therapy studies. The ability of T-BsAbs to redirect T cells to tumors can be quantitatively evaluated at multiple time points during treatment, allowing researchers to correlate the anti-tumor efficacy of T-BsAbs and other interventions with the persistence of T cells in tumors. This method alleviates the need to sacrifice animals during treatment to histologically assess T cell infiltration and can be repeated at multiple time points to determine the kinetics of T cell trafficking during and after treatment.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Humanos , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Linfocitos T , Neoplasias/terapia
20.
Nat Genet ; 55(6): 1022-1033, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37169874

RESUMEN

Patients with high-risk neuroblastoma generally present with widely metastatic disease and often relapse despite intensive therapy. As most studies to date focused on diagnosis-relapse pairs, our understanding of the genetic and clonal dynamics of metastatic spread and disease progression remain limited. Here, using genomic profiling of 470 sequential and spatially separated samples from 283 patients, we characterize subtype-specific genetic evolutionary trajectories from diagnosis through progression and end-stage metastatic disease. Clonal tracing timed disease initiation to embryogenesis. Continuous acquisition of structural variants at disease-defining loci (MYCN, TERT, MDM2-CDK4) followed by convergent evolution of mutations targeting shared pathways emerged as the predominant feature of progression. At diagnosis metastatic clones were already established at distant sites where they could stay dormant, only to cause relapses years later and spread via metastasis-to-metastasis and polyclonal seeding after therapy.


Asunto(s)
Recurrencia Local de Neoplasia , Neuroblastoma , Humanos , Recurrencia Local de Neoplasia/genética , Neuroblastoma/genética , Evolución Clonal , Mutación , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...