Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(5): 2372-2388, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214234

RESUMEN

Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Niño , Humanos , Neoplasias Encefálicas/patología , Reparación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Glioma/patología , Histonas/genética , Histonas/metabolismo , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
2.
bioRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732208

RESUMEN

The faithful segregation of intact genetic material and the perpetuation of chromatin states through mitotic cell divisions are pivotal for maintaining cell function and identity across cell generations. However, most exogenous mutagens generate long-lasting DNA lesions that are segregated during mitosis. How this segregation is controlled is unknown. Here, we uncover a mitotic chromatin-marking pathway that governs the segregation of UV-induced damage in human cells. Our mechanistic analyses reveal two layers of control: histone ADP-ribosylation, and the incorporation of newly synthesized histones at UV damage sites, that both prevent local mitotic phosphorylations on histone H3 serines. Functionally, this chromatin-marking pathway drives the asymmetric segregation of UV damage in the cell progeny with potential consequences on daughter cell fate. We propose that this mechanism may help preserve the integrity of stem cell compartments during asymmetric cell divisions.

3.
Nat Commun ; 12(1): 3835, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158510

RESUMEN

Transcription restart after a genotoxic challenge is a fundamental yet poorly understood process. Here, we dissect the interplay between transcription and chromatin restoration after DNA damage by focusing on the human histone chaperone complex HIRA, which is required for transcription recovery post UV. We demonstrate that HIRA is recruited to UV-damaged chromatin via the ubiquitin-dependent segregase VCP to deposit new H3.3 histones. However, this local activity of HIRA is dispensable for transcription recovery. Instead, we reveal a genome-wide function of HIRA in transcription restart that is independent of new H3.3 and not restricted to UV-damaged loci. HIRA coordinates with ASF1B to control transcription restart by two independent pathways: by stabilising the associated subunit UBN2 and by reducing the expression of the transcription repressor ATF3. Thus, HIRA primes UV-damaged chromatin for transcription restart at least in part by relieving transcription inhibition rather than by depositing new H3.3 as an activating bookmark.


Asunto(s)
Proteínas de Ciclo Celular/genética , Daño del ADN , Chaperonas de Histonas/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Transcripción Genética , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Cromatina/efectos de la radiación , Reparación del ADN , Células HeLa , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Humanos , Factores de Transcripción/metabolismo , Rayos Ultravioleta , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
4.
Nat Commun ; 12(1): 2428, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893291

RESUMEN

Heterochromatin is a critical chromatin compartment, whose integrity governs genome stability and cell fate transitions. How heterochromatin features, including higher-order chromatin folding and histone modifications associated with transcriptional silencing, are maintained following a genotoxic stress challenge is unknown. Here, we establish a system for targeting UV damage to pericentric heterochromatin in mammalian cells and for tracking the heterochromatin response to UV in real time. We uncover profound heterochromatin compaction changes during repair, orchestrated by the UV damage sensor DDB2, which stimulates linker histone displacement from chromatin. Despite massive heterochromatin unfolding, heterochromatin-specific histone modifications and transcriptional silencing are maintained. We unveil a central role for the methyltransferase SETDB1 in the maintenance of heterochromatic histone marks after UV. SETDB1 coordinates histone methylation with new histone deposition in damaged heterochromatin, thus protecting cells from genome instability. Our data shed light on fundamental molecular mechanisms safeguarding higher-order chromatin integrity following DNA damage.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN/genética , Heterocromatina/genética , Animales , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Heterocromatina/efectos de la radiación , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Células MCF-7 , Metilación , Ratones , Células 3T3 NIH , Rayos Ultravioleta
5.
Mol Cell ; 72(5): 888-901.e7, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30344095

RESUMEN

Safeguarding cell function and identity following a genotoxic stress challenge entails a tight coordination of DNA damage signaling and repair with chromatin maintenance. How this coordination is achieved and with what impact on chromatin integrity remains elusive. Here, we address these questions by investigating the mechanisms governing the distribution in mammalian chromatin of the histone variant H2A.X, a central player in damage signaling. We reveal that H2A.X is deposited de novo at sites of DNA damage in a repair-coupled manner, whereas the H2A.Z variant is evicted, thus reshaping the chromatin landscape at repair sites. Our mechanistic studies further identify the histone chaperone FACT (facilitates chromatin transcription) as responsible for the deposition of newly synthesized H2A.X. Functionally, we demonstrate that FACT potentiates H2A.X-dependent signaling of DNA damage. We propose that new H2A.X deposition in chromatin reflects DNA damage experience and may help tailor DNA damage signaling to repair progression.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/genética , ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Histonas/genética , Factores de Elongación Transcripcional/genética , Alfa-Amanitina/farmacología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/efectos de los fármacos , ADN/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/metabolismo , Humanos , Ratones , Morfolinas/farmacología , Células 3T3 NIH , Nucleosomas/química , Nucleosomas/efectos de los fármacos , Nucleosomas/metabolismo , Venenos/farmacología , Pirimidinas/farmacología , Pironas/farmacología , Transducción de Señal , Factores de Elongación Transcripcional/metabolismo
6.
Mol Cell ; 64(1): 65-78, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27642047

RESUMEN

Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage.


Asunto(s)
Cromatina/efectos de la radiación , Reparación del ADN , Técnica del Anticuerpo Fluorescente/métodos , Histonas/genética , Osteoblastos/efectos de la radiación , Línea Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Rayos Ultravioleta
7.
Mol Ther ; 20(4): 798-807, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22068429

RESUMEN

Xeroderma pigmentosum (XP) is a devastating disease associated with dramatic skin cancer proneness. XP cells are deficient in nucleotide excision repair (NER) of bulky DNA adducts including ultraviolet (UV)-induced mutagenic lesions. Approaches of corrective gene transfer in NER-deficient keratinocyte stem cells hold great hope for the long-term treatment of XP patients. To face this challenge, we developed a retrovirus-based strategy to safely transduce the wild-type XPC gene into clonogenic human primary XP-C keratinocytes. De novo expression of XPC was maintained in both mass population and derived independent candidate stem cells (holoclones) after more than 130 population doublings (PD) in culture upon serial propagation (>10(40) cells). Analyses of retrovirus integration sequences in isolated keratinocyte stem cells suggested the absence of adverse effects such as oncogenic activation or clonal expansion. Furthermore, corrected XP-C keratinocytes exhibited full NER capacity as well as normal features of epidermal differentiation in both organotypic skin cultures and in a preclinical murine model of human skin regeneration in vivo. The achievement of a long-term genetic correction of XP-C epidermal stem cells constitutes the first preclinical model of ex vivo gene therapy for XP-C patients.


Asunto(s)
Piel/citología , Piel/metabolismo , Células Madre/citología , Células Madre/metabolismo , Xerodermia Pigmentosa/terapia , Southern Blotting , Western Blotting , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Epidérmicas , Epidermis/metabolismo , Citometría de Flujo , Terapia Genética , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Xerodermia Pigmentosa/metabolismo
8.
J Clin Endocrinol Metab ; 95(12): 5403-11, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20826581

RESUMEN

CONTEXT: Thyroperoxidase (TPO) and dual oxidase (DUOX) are present at the apical membrane of thyrocytes, where TPO catalyzes thyroid hormone biosynthesis in the presence of H2O2 produced by DUOX. Both enzymes are colocalized and associated, but the consequences of this interaction remain obscure. OBJECTIVE: The objective of this study was to evaluate the functional consequences of TPO-DUOX interaction at the plasma membrane. DESIGN: The functional consequences of DUOX-TPO interaction were studied by measuring extracellular H2O2 concentration and TPO activity in a heterologous system. For this purpose, HEK293 cells were transiently transfected with a combination of human TPO with human DUOX1 or DUOX2 in the presence of their respective maturation factors, DUOXA1 or DUOXA2. The effect of human DUOX2 mutants in which cysteine residues in the N-terminal domain were replaced by glycines was also analyzed. RESULTS: We observed that production of H2O2 decreases both TPO and DUOX activities. We show that TPO presents a catalase-like effect that protects DUOX from inhibition by H2O2. This catalase-like effect depends on the association between both enzymes, which probably occurs through the DUOX peroxidase-like domain because this effect was not observed with human DUOX2 mutants. CONCLUSION: The DUOX-TPO association at the plasma membrane is relevant for normal enzyme properties. Normally, TPO consumes H2O2 produced by DUOX, decreasing the availability of this substance at the apical membrane of thyrocytes and, in turn, probably decreasing the oxidative damage of macromolecules.


Asunto(s)
Autoantígenos/metabolismo , Membrana Celular/enzimología , Yoduro Peroxidasa/metabolismo , Proteínas de Unión a Hierro/metabolismo , NADPH Oxidasas/metabolismo , Oxidorreductasas/metabolismo , Autoantígenos/genética , Catalasa/metabolismo , Oxidasas Duales , Citometría de Flujo , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Yoduro Peroxidasa/genética , Proteínas de Unión a Hierro/genética , Riñón/enzimología , NADPH Oxidasas/genética , Oligonucleótidos Antisentido , Transfección
9.
Cancer Res ; 70(10): 4123-32, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20424115

RESUMEN

During childhood, the thyroid gland is one of the most sensitive organs to the carcinogenetic effects of ionizing radiation that may lead to papillary thyroid carcinoma (PTC) associated with RET/PTC oncogene rearrangement. Exposure to ionizing radiation induces a transient "oxidative burst" through radiolysis of water, which can cause DNA damage and mediates part of the radiation effects. H(2)O(2) is a potent DNA-damaging agent that induces DNA double-strand breaks, and consequently, chromosomal aberrations. Irradiation by 5 Gy X-ray increased extracellular H(2)O(2). Therefore, we investigated the implication of H(2)O(2) in the generation of RET/PTC1 rearrangement after X-ray exposure. We developed a highly specific and sensitive nested reverse transcription-PCR method. By using the human thyroid cell line HTori-3, previously found to produce RET/PTC1 after gamma-irradiation, we showed that H(2)O(2), generated during a 5 Gy X-ray irradiation, causes DNA double-strand breaks and contributes to RET/PTC1 formation. Pretreatment of cells with catalase, a scavenger of H(2)O(2), significantly decreased RET/PTC1 rearrangement formation. Finally, RET/PTC chromosomal rearrangement was detected in HTori-3.1 cells after exposure of cells to H(2)O(2) (25 micromol/L), at a dose that did not affect the cell viability. This study shows for the first time that H(2)O(2) is able to cause RET/PTC1 rearrangement in thyroid cells and consequently highlights that oxidative stress could be responsible for the occurrence of RET/PTC1 rearrangement found in thyroid lesions even in the absence of radiation exposure.


Asunto(s)
Carcinoma Papilar/patología , Reordenamiento Génico/efectos de la radiación , Peróxido de Hidrógeno/farmacología , Proteínas de Fusión Oncogénica/genética , Proteínas Tirosina Quinasas/genética , Glándula Tiroides/efectos de la radiación , Neoplasias de la Tiroides/genética , Western Blotting , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/efectos de la radiación , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Reordenamiento Génico/efectos de los fármacos , Humanos , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/efectos de la radiación , Proteínas de Fusión Oncogénica/metabolismo , Oxidantes/farmacología , Proteínas Tirosina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Rayos X
10.
Endocr Relat Cancer ; 17(1): 27-37, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19779036

RESUMEN

NADPH oxidase 4 (NOX4) belongs to the NOX family that generates reactive oxygen species (ROS). Function and tissue distribution of NOX4 have not yet been entirely clarified. To date, in the thyroid gland, only DUOX1/2 NOX systems have been described. NOX4 mRNA expression, as shown by real-time PCR, was present in normal thyroid tissue, regulated by TSH and significantly increased in differentiated cancer tissues. TSH increased the protein level of NOX4 in human thyroid primary culture and NOX4-dependent ROS generation. NOX4 immunostaining was detected in normal and pathologic thyroid tissues. In normal thyroid tissue, staining was heterogeneous and mostly found in activated columnar thyrocytes but absent in quiescent flat cells. Papillary and follicular thyroid carcinomas displayed more homogeneous staining. The p22(phox) protein that forms a heterodimeric enzyme complex with NOX4 displayed an identical cellular expression pattern and was also positively regulated by TSH. ROS may have various biological effects, depending on the site of production. Intracellular NOX4-p22(phox) localization suggests a role in cytoplasmic redox signaling, in contrast to the DUOX localization at the apical membrane that corresponds to an extracellular H(2)O(2) production. Increased NOX4-p22(phox) in cancer might be related to a higher proliferation rate and tumor progression but a role in the development of tumors has to be further studied and established in the future.


Asunto(s)
Adenocarcinoma Folicular/enzimología , Adenoma/enzimología , Carcinoma Papilar/enzimología , Carcinoma/enzimología , NADPH Oxidasas/biosíntesis , Proteínas de Neoplasias/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Glándula Tiroides/enzimología , Neoplasias de la Tiroides/enzimología , Adenocarcinoma Folicular/patología , Adenoma/patología , Carcinoma/patología , Carcinoma Papilar/patología , Células Cultivadas/enzimología , Citoplasma/enzimología , Oxidasas Duales , Inducción Enzimática/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Proteínas de Neoplasias/genética , Oxidación-Reducción , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , ARN Interferente Pequeño/farmacología , Glándula Tiroides/citología , Neoplasias de la Tiroides/patología , Tirotropina/farmacología
11.
Genes Dev ; 20(11): 1429-34, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16751180

RESUMEN

Mutations in the CSA or CSB complementation genes cause the Cockayne syndrome, a severe genetic disorder that results in patients' death in early adulthood. CSA and CSB act in a transcription-coupled repair (TCR) pathway, but their functional relationship is not understood. We have previously shown that CSA is a subunit of an E3 ubiquitin ligase complex. Here we demonstrate that CSB is a substrate of this ligase: Following UV irradiation, CSB is degraded at a late stage of the repair process in a proteasome- and CSA-dependent manner. Moreover, we demonstrate the importance of CSB degradation for post-TCR recovery of transcription and for the Cockayne syndrome. Our results unravel for the first time the functional relationship between CSA and CSB.


Asunto(s)
Síndrome de Cockayne/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Prueba de Complementación Genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Células HeLa , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Factores de Transcripción/genética
12.
Cancer Res ; 62(16): 4685-9, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12183426

RESUMEN

Methionine depletion in the human cell line CCRF-CEM through the action of recombinant methioninase (rMETase), a methionine-cleaving enzyme, was previously demonstrated to produce a strong cytotoxic synergistic effect with fluorouracil (FUra) throughout a broad range of concentrations of FUra and rMETase, including subcytotoxic levels of rMETase. Potentiation was associated with a decrease in free thymidylate synthase from preexisting levels. To further investigate the action of rMETase on CCRF-CEM cells, in the present study we explored the effects of rMETase as a single agent on DNA methylation levels and DNA synthesis, which may be changed as a result of deprivation of methionine. Cells treated with rMETase under subcytotoxic conditions contained significantly lower levels of genomic methylated DNA than did control cells, as demonstrated by incorporation of the methyl radical of [methyl-(3)H]S-adenosylmethionine in DNA and by use of methylation-sensitive arbitrarily primed PCR. DNA hypomethylation produced by rMETase was of similar magnitude as that produced with the DNA methyltransferase inhibitor 5-azacytidine. Cells exposed to rMETase synthesized significantly more DNA than did untreated cells. Incorporation of [6-3H]thymidine and [6-3H]2'-deoxyuridine in these cells was augmented over that in control by mean factors of 1.78 and 2.36, respectively. Increased 3H nucleoside incorporation resulted in greater numbers of nuclear grains as demonstrated by autoradiography. The increase in DNA synthesis induced by rMETase is likely to result from enhancement of DNA repair because it was not accompanied by differences in cell cycle phase distribution or in total DNA content as determined by flow cytometry. We hypothesize that potentiation of FUra cytotoxicity by rMETase may result from increased inhibition of thymidylate synthase, together with DNA hypomethylation and enhanced DNA repair that could be involved in cell responses to drug-induced damage.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Liasas de Carbono-Azufre/farmacología , Metilación de ADN/efectos de los fármacos , ADN de Neoplasias/biosíntesis , Leucemia de Células T/tratamiento farmacológico , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Proteínas Recombinantes/farmacología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...