Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
Drug Alcohol Depend Rep ; 12: 100278, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39286536

RESUMEN

Background: Patients with alcohol use disorder (AUD) and high-risk opioid use are at risk of serious complications. The purpose of this study was to estimate the prevalence of and factors associated with high-risk opioid use in patients with an alcohol use problem from 2005 to 2018. Methods: This repeated cross-sectional study analyzed data from first admissions for alcohol treatment (2005-2018) to the NYS Office of Addiction Services and Supports merged with Medicaid Claims Data. High-risk opioid use was defined as opioid dose ≥50 morphine mg equivalents (MME) per day; opioid prescriptions overlapping ≥7 days; opioids for chronic pain >90 days or opioids for acute pain >7 days. Results: Patients receiving ≥50 MME increased from 690 to 3226 from 2005 to 2010; then decreased to 2330 in 2018. From 2005-2011, patients with opioid prescriptions overlapping ≥7 days increased from 226 to 1594 then decreased to 892 in 2018. From 2005-2010, opioid use >7 days for acute pain increased from 133 to 970 and plateaued after 2010. From 2005-2018, patients who received opioids >90 days for chronic pain trended from 186 to 1655. White patients, females, age 36-55, patients with chronic and acute pain diagnoses had the highest rates of high-risk use. Conclusions: The prevalence of high-risk opioid use in patients with alcohol use problems increased from 2005 to 2011, and generally decreased after 2010. However, prevalence of opioids >90 days for chronic pain trended up from 2005 to 2018. High-risk opioid use among patients with AUD emphasizes the need to develop interventional strategies to improve patient care.

2.
ACS Sens ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291653

RESUMEN

In response to the urgent need for advanced climate change mitigation tools, this study introduces an innovative CO2 gas sensor based on p-p-type heterostructures designed for effective operation at room temperature. This sensor represents a significant step forward, utilizing the synergistic effects of p-p heterojunctions to enhance the effective interfacial area, thereby improving sensitivity. The incorporation of CuO nanoparticles and rGO sheets also optimizes gas transport channels, enhancing the sensor's performance. Our CuO/rGO heterostructures, with 5 wt % rGO, have shown a notable maximum response of 39.6-500 ppm of CO2 at 25 °C, and a low detection limit of 2 ppm, indicating their potential as high-performance, room-temperature CO2 sensors. The prepared sensor demonstrates long-term stability, maintaining 98% of its initial performance over a 30-day period when tested at 1-day intervals. Additionally, the sensor remains stable under conditions of over 40% relative humidity. Furthermore, a first-principles study provides insights into the interaction mechanisms with CO2 molecules, enhancing our understanding of the sensor's operation. This research contributes to the development of CO2 monitoring solutions, offering a practical and cost-effective approach to environmental monitoring in the context of global climate change efforts.

4.
Environ Toxicol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119817

RESUMEN

Acute lung injury (ALI) is a difficult condition to manage, especially when it is complicated by bacterial sepsis. Hibifolin, a flavonoid glycoside, has anti-inflammatory properties that make it a potential treatment for ALI. However, more research is needed to determine its effectiveness in LPS-induced ALI. In this study, male ICR mice were treated with hibifolin before LPS-induced ALI. Protein content and neutrophil count in bronchoalveolar lavage (BAL) fluid were measured by BCA assay and Giemsa staining method, respectively. The levels of proinflammatory cytokines and adhesive molecules were detected by ELISA assay. The expression of NFκB p65 phosphorylation, IκB degradation, and Akt phosphorylation was assessed by western blot assay. Hibifolin pre-treatment significantly reduced pulmonary vascular barrier dysfunction and neutrophil infiltration into the BAL fluid in LPS-induced ALI mice. In addition, LPS-induced expression of proinflammatory cytokines (IL-1ß, IL-6, TNF-α) and adhesive molecules (ICAM-1, VCAM-1) within the BAL fluid were markedly reduced by hibifolin in LPS-induced ALI mice. More, hibifolin inhibited LPS-induced phosphorylation of NFκB p65, degradation of IκB, and phosphorylation of Akt in lungs with ALI mice. In conclusion, hibifolin shows promise in improving the pathophysiological features and proinflammatory responses of LPS-induced ALI in mice through the NFκB pathway and its upstream factor, Akt phosphorylation.

5.
Chem Commun (Camb) ; 60(68): 9050-9053, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39099533

RESUMEN

In situ growth of intertwined trinuclear copper complexes (nCu3) on a cellulose-derived carbon support (CMC) produced a high-performance electrocatalyst (CMC-nCu3) for the oxygen reduction reaction (ORR), which demonstrated superior performance in zinc-air batteries compared to a commercial Pt/C catalyst. This work highlights the importance of copper-based molecular catalysts with rich and intertwined tricopper structures for boosting both ORR activity and stability.

6.
J Biomed Opt ; 29(8): 085001, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39165858

RESUMEN

Significance: Fluorescent organic dyes provide imaging capabilities at cellular and sub-cellular levels. However, a common problem associated with some of the existing dyes such as the US FDA-approved indocyanine green (ICG) is their weak fluorescence emission. Alternative dyes with greater emission characteristics would be useful in various imaging applications. Complementing optical imaging, magnetic resonance (MR) imaging enables deep tissue imaging. Nano-sized delivery systems containing dyes with greater fluorescence emission as well as MR contrast agents present a promising dual-mode platform with high optical sensitivity and deep tissue imaging for image-guided surgical applications. Aim: We have engineered a nano-sized platform, derived from erythrocyte ghosts (EGs), with dual near-infrared fluorescence and MR characteristics by co-encapsulation of a brominated carbocyanine dye and gadobenate dimeglumine (Gd-BOPTA). Approach: We have investigated the use of three brominated carbocyanine dyes (referred to as BrCy106, BrCy111, and BrCy112) with various degrees of bromination, structural symmetry, and acidic modifications for encapsulation by nano-sized EGs (nEGs) and compared their resulting optical characteristics with nEGs containing ICG. Results: We find that asymmetric dyes (BrCy106 and BrCy112) with one dibromobenzene ring offer greater fluorescence emission characteristics. For example, the relative fluorescence quantum yield ( ϕ ) for nEGs fabricated using 100 µ M of BrCy112 is ∼ 41 -fold higher than nEGs fabricated using the same concentrations of ICG. The dual-mode nEGs containing BrCy112 and Gd-BOPTA show a nearly twofold increase in their ϕ as compared with their single optical mode counterpart. Cytotoxicity is not observed upon incubation of SKOV3 cells with nEGs containing BrCy112. Conclusions: Erythrocyte nano-ghosts with dual optical and MR characteristics may ultimately prove useful in various biomedical imaging applications such as image-guided tumor surgery where MR imaging can be used for tumor staging and mapping, and fluorescence imaging can help visualize small tumor nodules for resection.


Asunto(s)
Carbocianinas , Eritrocitos , Colorantes Fluorescentes , Imagen por Resonancia Magnética , Imagen Óptica , Imagen por Resonancia Magnética/métodos , Eritrocitos/química , Colorantes Fluorescentes/química , Carbocianinas/química , Imagen Óptica/métodos , Humanos , Medios de Contraste/química , Verde de Indocianina/química
7.
RSC Adv ; 14(37): 27310-27322, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39205933

RESUMEN

In this study, two series of samples (rT-Pt/TiO2 prepared with a hydrogen pretreatment and Tr-Pt/TiO2 prepared with an oxygen pretreatment) were prepared by treating commercial TiO2 supports in different atmospheres to establish different TiO2 interfacial structures, followed by the addition of platinum nanoparticles (NPs) for the catalyzed hydrogenation/dehydrogenation cycle of N-ethylcarbazole (NEC). The kinetic analysis and reaction mechanism were investigated by combining XRD, Raman, CO-DRIFT, HRTEM, XPS, H2-TPD and DFT calculations. It was found that the performance of the samples for the NEC system's cyclic hydrogen storage could be modulated by treating the TiO2 interfacial structure with different atmospheres varying the extent of strong metal-support interaction (SMSI). In addition, a turnover frequency (TOF) of 191.52 min-1 for dehydrogenation was achieved at 170 °C, which is better than the previously reported catalysts. Experimental studies (characterization and kinetic studies) and DFT calculations confirmed that the SMSI of the Tr-Pt/TiO2 series samples promoted the escape of H2 and enhanced the catalytic activity for 4H-NEC in the 12H-NEC dehydrogenation reaction. In the NEC hydrogenation reaction, the rT-Pt/TiO2 series samples were pretreated with H2 before loading platinum metal, which led to the early activation of Ti4+ in their carriers, and thus suppressed the SMSI effect of the reduction process after loading platinum. This process caused the interface formed by rT-Pt/TiO2 to have a higher energy barrier to 6H-NEC, which is an intermediate product of the NEC hydrogenation process, and this interrupted the hydrogenation process of 6H-NEC.

8.
ACS Appl Mater Interfaces ; 16(29): 37927-37937, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38980948

RESUMEN

Fine tuning of the metal site coordination environment of a single-atom catalyst (SAC) to boost its catalytic activity for oxygen reduction reaction (ORR) is of significance but challenging. Herein, we report a new SAC bearing Fe-N3C-N sites with asymmetric in-plane coordinated Fe-N3C and axial coordinated N atom for ORR, which was obtained by pyrolysis of an iron isoporphyrin on polyvinylimidazole (PVI) coated carbon black. The C@PVI-(NCTPP)Fe-800 catalyst exhibited significantly improved ORR activity (E1/2 = 0.89 V vs RHE) than the counterpart SAC with Fe-N4-N sites in 0.1 M KOH. Significantly, the Zn-air batteries equipped with the C@PVI-(NCTPP)Fe-800 catalyst demonstrated an open-circuit voltage (OCV) of 1.45 V and a peak power density (Pmax) of 130 mW/cm2, outperforming the commercial Pt/C catalyst (OCV = 1.42 V; Pmax = 119 mW/cm2). The density functional theory (DFT) calculations revealed that the d-band center of the asymmetric Fe-N3C-N structure shifted upward, which enhances its electron-donating ability, favors O2 adsorption, and supports O-O bond activation, thus leading to significantly promoted catalytic activity. This research presents an intriguing strategy for the designing of the active site architecture in metal SACs with a structure-function controlled approach, significantly enhancing their catalytic efficiency for the ORR and offering promising prospects in energy-conversion technologies.

9.
BMC Public Health ; 24(1): 1979, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048951

RESUMEN

BACKGROUND: The effectiveness of fish oil in preventing cardiovascular events is still debating. Some studies indicate a correlation between the use of fish oil supplements and reduced mortality or decreased incidence of stroke. However, other studies show no significant association between fish oil intake and stroke prevention, indicating an ongoing debate. This study aimed at exploring which subjects may benefit more from fish oil supplementation. METHODS: This study utilized the data obtained through face-to-face interview from the Taiwan Longitudinal Study in Aging (TLSA). A total of 3,652 participants were included from the 2003 baseline data, after excluding patients with pre-existing ischemic heart disease or stroke. Participants were divided into two groups based on whether taking fish oil supplement or not. Participants were followed until 2015, estimating and comparing the all-cause mortality and cumulative incidence rate of stroke between both groups. RESULTS: The results of the 12-year longitudinal study showed that the cumulative incidence rate of stroke in the fish oil supplementation group was 5.7%, compared to 7.7% in the non-supplemented group (P < 0.05). Additionally, the crude hazard ratio for stroke was significantly lower in the fish oil supplementation group (HR = 0.686;95% CI 0.476-0.987). However, after adjusting potential confounders, the adjusted risk of stroke was lower only for the diabetic patients supplemented with fish oil (aHR = 0.123; 95% CI 0.016-0.930) compared to non-diabetic patients (aHR = 0.917; 95% CI 0.616-1.364). CONCLUSION: This study suggests that there is an association between fish oil supplementation and a lower cumulative incidence rate of subsequent stroke among diabetic patients.


Asunto(s)
Enfermedades Cardiovasculares , Suplementos Dietéticos , Aceites de Pescado , Accidente Cerebrovascular , Humanos , Taiwán/epidemiología , Estudios Longitudinales , Masculino , Femenino , Aceites de Pescado/administración & dosificación , Anciano , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/mortalidad , Incidencia , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/prevención & control , Persona de Mediana Edad , Anciano de 80 o más Años
10.
Vaccines (Basel) ; 12(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38932407

RESUMEN

There is a knowledge gap concerning the proper timing for COVID-19 vaccination in cancer patients undergoing chemotherapy. We aimed to evaluate the suitability of the guidelines that recommend waiting at least three months after undergoing chemotherapy before receiving a COVID-19 vaccine. This retrospective cohort study used aggregated data from the TriNetX US Collaboratory network. Participants were grouped into two groups based on the interval between chemotherapy and vaccination. The primary outcome assessed was infection risks, including COVID-19; skin, intra-abdominal, and urinary tract infections; pneumonia; and sepsis. Secondary measures included healthcare utilization and all causes of mortality. Kaplan-Meier analysis and the Cox proportional hazard model were used to calculate the cumulative incidence and hazard ratio (HR) and 95% confidence intervals for the outcomes. The proportional hazard assumption was tested with the generalized Schoenfeld approach. Four subgroup analyses (cancer type, vaccine brand, sex, age) were conducted. Sensitivity analyses were performed to account for competing risks and explore three distinct time intervals. Patients receiving a vaccine within three months after chemotherapy had a higher risk of COVID-19 infection (HR: 1.428, 95% CI: 1.035-1.970), urinary tract infection (HR: 1.477, 95% CI: 1.083-2.014), and sepsis (HR: 1.854, 95% CI: 1.091-3.152) compared to those who adhered to the recommendations. Hospital inpatient service utilization risk was also significantly elevated for the within three months group (HR: 1.692, 95% CI: 1.354-2.115). Adhering to a three-month post-chemotherapy waiting period reduces infection and healthcare utilization risks for cancer patients receiving a COVID-19 vaccine.

11.
Dalton Trans ; 53(27): 11464-11469, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38910547

RESUMEN

Bioinspired by the active sites of multicopper oxidases (MCOs), bi/multinuclear copper complexes have attracted great attention in promoting catalytic activity for the oxygen reduction reaction (ORR). Herein, we report the preparation of a Cu-N-C electrocatalyst Cu-BPOZ@CNB-400 for efficient ORR, which was obtained by low temperature pyrolysis of a dinuclear 2,5-bis(2-pyridyl)-1,3,4-oxadiazole (BPOZ) copper complex loaded on a N-doped carbon support at 400 °C. Cu-BPOZ@CNB-400 exhibited a half-wave potential (E1/2) of 0.86 V vs. RHE for the ORR in 0.1 M KOH solution, which was significantly higher than that of the Cu-BPOZ@CNB-800 (E1/2 = 0.83 V) catalyst treated under high temperature (at 800 °C) and the control catalyst Cu-Phen@CNB-400 (E1/2 = 0.82 V) derived from low-temperature-treatment (at 400 °C) of a mononuclear phenanthroline-coordinated-Cu complex loaded on a N-doped carbon support. When Cu-BPOZ@CNB-400 was applied as the cathode catalyst in zinc-air batteries a maximum power density (Pmax) of 127 mW cm-2 could be achieved, demonstrating comparable catalyst performance to the commercial 20 wt% Pt/C (Pmax = 122 mW cm-2) and the control Cu-Phen@CNB-400 catalyst (Pmax = 105 mW cm-2) under similar experimental conditions. Low-temperature pyrolysis of dinuclear copper complexes on a carbon support improved the charge transfer efficiency, inhibited metal aggregation, and could produce highly dispersed Cu-N-C catalysts with dinuclear copper sites for promoting the 4e--reduction selectivity of the ORR. It thus provides a cost-effective approach for the controllable fabrication of efficient ORR catalysts to be applied for energy conversion devices.

12.
Angew Chem Int Ed Engl ; 63(32): e202407702, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38751355

RESUMEN

The current bottleneck in the development of efficient photocatalysts for hydrogen evolution is the limited availability of high-performance acceptor units. Over the past nine years, dibenzo[b,d]thiophene sulfone (DBS) has been the preferred choice for the acceptor unit. Despite extensive exploration of alternative structures as potential replacements for DBS, a superior substitute remains elusive. In this study, a symmetry-breaking strategy was employed on DBS to develop a novel acceptor unit, BBTT-1SO. The asymmetric structure of BBTT-1SO proved beneficial for increasing multiple moment and polarizability. BBTT-1SO-containing polymers showed higher efficiencies for hydrogen evolution than their DBS-containing counterparts by up to 166 %. PBBTT-1SO exhibited an excellent hydrogen evolution rate (HER) of 222.03 mmol g-1 h-1 and an apparent quantum yield of 27.5 % at 500 nm. Transient spectroscopic studies indicated that the BBTT-1SO-based polymers facilitated electron polaron formation, which explains their superior HERs. PBBTT-1SO also showed 14 % higher HER in natural seawater splitting than that in deionized water splitting. Molecular dynamics simulations highlighted the enhanced water-PBBTT-1SO polymer interactions in salt-containing solutions. This study presents a pioneering example of a substitute acceptor unit for DBS in the construction of high-performance photocatalysts for hydrogen evolution.

15.
Drug Test Anal ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653500

RESUMEN

To prevent athletes from unintentional doping, the anti-doping authorities in Taiwan have launched several sports-prohibited substances inquiry services since 2008. This study aimed to enhance the prevention of sports-prohibited substance misuse by analyzing data collected from major nationwide service systems, enabling the identification of trends in athletes' exposure to drugs and prohibited substances. The study collected over 30,000 data points from three major national anti-doping inquiry systems, spanning from 2008 to 2022. The information of the users consulted products, prohibited substances, and sports disciplines in the data were calculated and categorized. The usage of inquiry systems has shown an increasing trend from 2008 to 2022. Athletes comprised the majority of users (> 40%), significantly outnumbering other user groups (all below 20%). Among the inquiries, Western medicine accounted for the highest percentage (up to 79.6%), and it also contained the majority of the prohibited substances. Interestingly, traditional Chinese medicines had a higher chance (35.9%) of containing prohibited substances, as indicated by the mobile application. The prohibited substances mainly belonged to class S6 stimulants and S9 glucocorticoids. Among the daily medicinal products and nutritional supplements encountered by sports personnel, approximately 30% of them were found to contain prohibited substances. Future educational efforts should focus on raising awareness about traditional Chinese medicines and drugs for the common cold, ADHD, and pain relief, as well as their regulation, to prevent the misuse of prohibited substances.

16.
Environ Sci Pollut Res Int ; 31(18): 26916-26927, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456980

RESUMEN

Catalytic wet peroxide oxidation (CWPO) has become an important deep oxidation technology for organics removal in wastewater treatments. Supported Cu-based catalysts belong to an important type of CWPO catalyst. In this paper, two Cu catalysts, namely, Cu/Al2O3-air and Cu/Al2O3-H2 were prepared and evaluated through catalytic degradation of phenol. It was found that Cu/Al2O3-H2 had an excellent catalytic performance (TOC removal rate reaching 96%) and less metal dissolution than the Cu/Al2O3-air case. Moreover, when the organic removal rate was promoted at a higher temperature, the metal dissolution amounts was decreased. Combined with hydroxyl radical quenching experiments, a catalytic oxidation mechanism was proposed to explain the above-mentioned interesting behaviors of the Cu/Al2O3-H2 catalyst for CWPO. The catalytic test results as well as the proposed mechanism can provide better guide for design and synthesis of good CWPO catalysts.


Asunto(s)
Cobre , Oxidación-Reducción , Peróxidos , Fenol , Catálisis , Cobre/química , Peróxidos/química , Fenol/química , Óxido de Aluminio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos
17.
NPJ Sci Food ; 8(1): 19, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555403

RESUMEN

SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.

18.
Brain Behav Immun Health ; 37: 100754, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38511149

RESUMEN

Inflammatory responses to acute stimuli are proposed to regulate sleep, but the relationship between chronic inflammation and habitual sleep duration is elusive. Here, we study this relation using genetically predicted level of chronic inflammation, indexed by CRP and IL6 signaling, and self-reported sleep duration. By Mendelian randomization analysis, we show that elevated CRP level within <10 mg/L has a homeostatic effect that facilitates maintaining 7-8 h sleep duration per day - making short-sleepers sleep longer (p = 2.42 × 10-2) and long-sleepers sleep shorter (1.87 × 10-7); but it is not associated with the overall sleep duration (p = 0.17). This homeostatic effect replicated in an independent CRP dataset. We observed causal effects of the soluble interleukin 6 receptor and gp130 on overall sleep duration (p = 1.62 × 10-8, p = 2.61 × 10-58, respectively), but these effects disappeared when CRP effects were accounted for in the model. Using polygenic score analysis, we found that the homeostatic effect of CRP on sleep duration stems primarily from the genetic variants within the CRP gene region: when genetic variants outside of this region were used to predict CRP levels, the opposite direction of effect was observed. In conclusion, we show that elevated CRP level may causally facilitate maintaining an optimal sleep duration that is beneficial to health, thus updating our current knowledge of immune regulation on sleep.

19.
J Chem Theory Comput ; 20(10): 4229-4238, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38400860

RESUMEN

Carbon monoxide (CO) is a byproduct of the incomplete combustion of carbon-based fuels, such as wood, coal, gasoline, or natural gas. As incomplete combustion in a fire accident or in an engine, massively produced CO leads to a serious life threat because CO competes with oxygen (O2) binding to hemoglobin and makes people suffer from hypoxia. Although there is hyperbaric O2 therapy for patients with CO poisoning, the nanoscale mechanism of CO dissociation in the O2-rich environment is not completely understood. In this study, we construct the classical force field parameters compatible with the CHARMM for simulating the coordination interactions between hemoglobin, CO, and O2, and use the force field to reveal the impact of O2 on the binding strength between hemoglobin and CO. Density functional theory and Car-Parrinello molecular dynamics simulations are used to obtain the bond energy and equilibrium geometry, and we used machine learning enabled via a feedforward neural network model to obtain the classical force field parameters. We used steered molecular dynamics simulations with a force field to characterize the mechanical strength of the hemoglobin-CO bond before rupture under different simulated O2-rich environments. The results show that as O2 approaches the Fe2+ of heme at a distance smaller than ∼2.8 Å, the coordination bond between CO and Fe2+ is reduced to 50% bond strength in terms of the peak force observed in the rupture process. This weakening effect is also shown by the free energy landscape measured by our metadynamics simulation. Our work suggests that the O2-rich environment around the hemoglobin-CO bond effectively weakens the bonding, so that designing of O2 delivery vector to the site is helpful for alleviating CO binding, which may shed light on de novo drug design for CO poisoning.


Asunto(s)
Monóxido de Carbono , Hemoglobinas , Simulación de Dinámica Molecular , Oxígeno , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Teoría Funcional de la Densidad , Humanos , Unión Proteica
20.
Sci Adv ; 10(8): eadj0347, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394210

RESUMEN

Hexanucleotide repeat expansion in C9ORF72 (C9) is the most prevalent mutation among amyotrophic lateral sclerosis (ALS) patients. The patients carry over ~30 to hundreds or thousands of repeats translated to dipeptide repeats (DPRs) where poly-glycine-arginine (GR) and poly-proline-arginine (PR) are most toxic. The structure-function relationship is still unknown. Here, we examined the minimal neurotoxic repeat number of poly-GR and found that extension of the repeat number led to a loose helical structure disrupting plasma and nuclear membrane. Poly-GR/PR bound to nucleotides and interfered with transcription. We screened and identified a sulfated disaccharide that bound to poly-GR/PR and rescued poly-GR/PR-induced toxicity in neuroblastoma and C9-ALS-iPSC-derived motor neurons. The compound rescued the shortened life span and defective locomotion in poly-GR/PR expressing Drosophila model and improved motor behavior in poly-GR-injected mouse model. Overall, our results reveal structural and toxicity mechanisms for poly-GR/PR and facilitate therapeutic development for C9-ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Dipéptidos/farmacología , Arginina/genética , Sulfatos , Drosophila/genética , Daño del ADN , Expansión de las Repeticiones de ADN , Proteína C9orf72/genética , Proteína C9orf72/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...