Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167214, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718846

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC), is characteristic by a heterogeneous tumor microenvironment and gene mutations, conveys a dismal prognosis and low response to chemotherapy and immunotherapy. Here, we found that checkpoint suppressor 1 (CHES1) served as a tumor repressor in PDAC and was associated with patient prognosis. Functional experiments indicated that CHES1 suppressed the proliferation and invasion of PDAC by modulating cellular senescence. To further identify the downstream factor of CHES1 in PDAC, label-free quantitative proteomics analysis was conducted, which showed that the oncogenic Aldo-keto reductase 1B10 (AKR1B10) was transcriptionally repressed by CHES1 in PDAC. And AKR1B10 facilitated the malignant activity and repressed senescent phenotype of PDAC cells. Moreover, pharmaceutical inhibition of AKR1B10 with Oleanolic acid (OA) significantly induced tumor regression and sensitized PDAC cells to gemcitabine, and this combined therapy did not cause obvious side effects. Rescued experiments revealed that CHES1 regulated the tumorigenesis and gemcitabine sensitivity through AKR1B10-mediated senescence in PDAC. In summary, this study revealed that the CHES1/AKR1B10 axis modulated the progression and cellular senescence in PDAC, which might provide revenues for drug-targeting and senescence-inducing therapies for PDAC.

2.
J Am Chem Soc ; 146(9): 6225-6230, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386658

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) accumulate in water resources and pose serious environmental and health threats due to their nonbiodegradable nature and long environmental persistence times. Strategies for the efficient removal of PFAS from contaminated water are needed to address this concern. Here, we report a fluorinated nonporous adaptive crystalline cage (F-Cage 2) that exploits electrostatic interaction, hydrogen bonding, and F-F interactions to achieve the efficient removal of perfluorooctanoic acid (PFOA) from aqueous source phases. F-Cage 2 exhibits a high second-order kobs value of approximately 441,000 g mg-1 h-1 for PFOA and a maximum PFOA adsorption capacity of 45 mg g-1. F-Cage 2 can decrease PFOA concentrations from 1500 to 6 ng L-1 through three rounds of flow-through purification, conducted at a flow rate of 40 mL h-1. Elimination of PFOA from PFOA-loaded F-Cage 2 is readily achieved by rinsing with a mixture of MeOH and saturated NaCl. Heating at 80 °C under vacuum then makes F-Cage 2 ready for reuse, as demonstrated across five successive uptake and release cycles. This work thus highlights the potential utility of suitably designed nonporous adaptive crystals as platforms for PFAS remediation.

3.
CNS Neurosci Ther ; 30(2): e14557, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38421132

RESUMEN

BACKGROUND: There is growing evidence of a strong correlation between pain sensitivity and cognitive function under both physiological and pathological conditions. However, the detailed mechanisms remain largely unknown. In the current study, we sought to explore candidate genes and common molecular mechanisms underlying pain sensitivity and cognitive function with a transcriptome-wide association study using recombinant inbred mice from the BXD family. METHODS: The pain sensitivity determined by Hargreaves' paw withdrawal test and cognition-related phenotypes were systematically analyzed in 60 strains of BXD mice and correlated with hippocampus transcriptomes, followed by quantitative trait locus (QTL) mapping and systems genetics analysis. RESULTS: The pain sensitivity showed significant variability across the BXD strains and co-varies with cognitive traits. Pain sensitivity correlated hippocampual genes showed a significant involvement in cognition-related pathways, including glutamatergic synapse, and PI3K-Akt signaling pathway. Moreover, QTL mapping identified a genomic region on chromosome 4, potentially regulating the variation of pain sensitivity. Integrative analysis of expression QTL mapping, correlation analysis, and Bayesian network modeling identified Ring finger protein 20 (Rnf20) as the best candidate. Further pathway analysis indicated that Rnf20 may regulate the expression of pain sensitivity and cognitive function through the PI3K-Akt signaling pathway, particularly through interactions with genes Ppp2r2b, Ppp2r5c, Col9a3, Met, Rps6, Tnc, and Kras. CONCLUSIONS: Our study demonstrated that pain sensitivity is associated with genetic background and Rnf20-mediated PI3K-Akt signaling may involve in the regulation of pain sensitivity and cognitive functions.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Ratones Endogámicos C57BL , Teorema de Bayes , Umbral del Dolor , Cognición
4.
J Virol ; 98(2): e0140823, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38189252

RESUMEN

Autophagy generally functions as a cellular surveillance mechanism to combat invading viruses, but viruses have evolved various strategies to block autophagic degradation and even subvert it to promote viral propagation. White spot syndrome virus (WSSV) is the most highly pathogenic crustacean virus, but little is currently known about whether crustacean viruses such as WSSV can subvert autophagic degradation for escape. Here, we show that even though WSSV proliferation triggers the accumulation of autophagosomes, autophagic degradation is blocked in the crustacean species red claw crayfish. Interestingly, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex including CqSNAP29, CqVAMP7, and the novel autophagosome SNARE protein CqSyx12 is required for autophagic flux to restrict WSSV replication, as revealed by gene silencing experiments. Simultaneously, the expressed WSSV tegument protein VP26, which likely localizes on autophagic membrane mediated by its transmembrane region, binds the Qb-SNARE domain of CqSNAP29 to competitively inhibit the binding of CqSyx12-Qa-SNARE with CqSNAP29-Qb-SNARE; this in turn disrupts the assembly of the CqSyx12-SNAP29-VAMP7 SNARE complex, which is indispensable for the proposed fusion of autophagosomes and lysosomes. Consequently, the autophagic degradation of WSSV is likely suppressed by the expressed VP26 protein in vivo in crayfish, thus probably protecting WSSV components from degradation via the autophagosome-lysosome pathway, resulting in evasion by WSSV. Collectively, these findings highlight how a DNA virus can subvert autophagic degradation by impairing the assembly of the SNARE complex to achieve evasion, paving the way for understanding host-DNA virus interactions from an evolutionary point of view, from crustaceans to mammals.IMPORTANCEWhite spot syndrome virus (WSSV) is one of the largest animal DNA viruses in terms of its genome size and has caused huge economic losses in the farming of crustaceans such as shrimp and crayfish. Detailed knowledge of WSSV-host interactions is still lacking, particularly regarding viral escape from host immune clearance. Intriguingly, we found that the presence of WSSV-VP26 might inhibit the autophagic degradation of WSSV in vivo in the crustacean species red claw crayfish. Importantly, this study is the first to show that viral protein VP26 functions as a core factor to benefit WSSV escape by disrupting the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which is necessary for the proposed fusion of autophagosomes with lysosomes for subsequent degradation. These findings highlight a novel mechanism of DNA virus evasion by blocking SNARE complex assembly and identify viral VP26 as a key candidate for anti-WSSV targeting.


Asunto(s)
Astacoidea , Autofagia , Virus del Síndrome de la Mancha Blanca 1 , Animales , Astacoidea/metabolismo , Autofagosomas/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Virus del Síndrome de la Mancha Blanca 1/fisiología
5.
Adv Mater ; 36(7): e2308507, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37885345

RESUMEN

Solid-state polymer electrolytes (SPEs) suffer from the low ionic conductivity and poor capability of suppressing lithium (Li) dendrites, which limits their utility in the preparation of all solid-state Li-metal batteries (LMBs). It is reported here a flexible solid supramolecular electrolyte that incorporates a new anion capture agent, namely a phenylboronic acid functionalized calix[4]pyrrole (C4P), into a poly(ethylene oxide) (PEO) matrix. The resulting solid-state supramolecular electrolyte demonstrates high ionic conductivity (1.9 × 10-3  S cm-1 at 60 °C) and a high Li+ transference number ( t Li + ${t}_{{\mathrm{Li}}^{\mathrm{ + }}}$  = 0.70). Furthermore, the assembled Li|C4P-PEO-LiTFSI|LiFePO4 cell allows for stable cycling over 1200 cycles at 1 C at 60 °C, as well as good rate performance. The favorable performance of the C4P-PEO-LiTFSI SPE leads to suggest it can prove useful in the creation of high energy density solid-state LMBs.

6.
J Proteome Res ; 22(9): 2936-2949, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611228

RESUMEN

Sleep loss is associated with cognitive dysfunction. However, the detailed mechanisms remain unclear. In this study, we established a para-chlorophenylalanine (PCPA)-induced insomniac mouse model with impaired cognitive function. Mass-spectrometry-based proteomics showed that the expression of 164 proteins was significantly altered in the hippocampus of the PCPA mice. To identify critical regulators among the potential markers, a transcriptome-wide association screening was performed in the BXD mice panel. Among the candidates, the expression of pleiotrophin (Ptn) was significantly associated with cognitive functions, indicating that Ptn-mediates sleep-loss-induced cognitive impairment. Gene co-expression analysis further revealed the potential mechanism by which Ptn mediates insomnia-induced cognitive impairment via the MAPK signaling pathway; that is, the decreased secretion of Ptn induced by insomnia leads to reduced binding to Ptprz1 on the postsynaptic membrane with the activation of the MAPK pathway via Fos and Nr4a1, further leading to the apoptosis of neurons. In addition, Ptn is genetically trans-regulated in the mouse hippocampus and implicated in neurodegenerative diseases in human genome-wide association studies. Our study provides a novel biomarker for insomnia-induced cognitive impairment and a new strategy for seeking neurological biomarkers by the integration of proteomics and systems genetics.


Asunto(s)
Disfunción Cognitiva , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Animales , Ratones , Estudio de Asociación del Genoma Completo , Proteómica , Disfunción Cognitiva/genética , Sueño
7.
Nat Commun ; 14(1): 2294, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085505

RESUMEN

Carbon-supported nanoparticles are indispensable to enabling new energy technologies such as metal-air batteries and catalytic water splitting. However, achieving ultrasmall and high-density nanoparticles (optimal catalysts) faces fundamental challenges of their strong tendency toward coarsening and agglomeration. Herein, we report a general and efficient synthesis of high-density and ultrasmall nanoparticles uniformly dispersed on two-dimensional porous carbon. This is achieved through direct carbothermal shock pyrolysis of metal-ligand precursors in just ~100 ms, the fastest among reported syntheses. Our results show that the in situ metal-ligand coordination (e.g., N → Co2+) and local ordering during millisecond-scale pyrolysis play a crucial role in kinetically dominated fabrication and stabilization of high-density nanoparticles on two-dimensional porous carbon films. The as-obtained samples exhibit excellent activity and stability as bifunctional catalysts in oxygen redox reactions. Considering the huge flexibility in coordinated precursors design, diversified single and multielement nanoparticles (M = Fe, Co, Ni, Cu, Cr, Mn, Ag, etc) were generally fabricated, even in systems well beyond traditional crystalline coordination chemistry. Our method allows for the transient and general synthesis of well-dispersed nanoparticles with great simplicity and versatility for various application schemes.

8.
Aging (Albany NY) ; 15(6): 2158-2169, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36961417

RESUMEN

Neuronal loss is the central abnormality occurring in brains suffering from Alzheimer's disease (AD). The notion that AD causes the death of neurons point towards protection of neuronal morphology and function as important therapeutic strategies. The perforant path projections from the entorhinal cortex to the dentate gyrus is the most vulnerable circuit with respect to AD. It's known that the perforant path is a very important structure for synaptic plasticity and cognitive functions. NgR (Nogo receptor) is not only involved in limiting injury-induced axonal growth but also in pathological features of AD. So, the mechanism of how NgR affects the perforant path needs further investigation. In this study, the effect of NgR in the perforant path on the neuronal morphology and function in APP/PS1 transgenic mice was studied. The results showed that downregulation of NgR in perforant path ameliorate the damaged morphology and decreased number of neurons in APP/PS1 mice. Concurrently, NgR knockdown enhanced dendritic complexity and increased postsynaptic protein density in APP/PS1 mice. Furthermore, the RT-PCR results indicated that there is downregulation of M1 phenotypes of microglial gene expression in the hippocampus of TG-shNgR mice. Our study suggests that NgR plays a critical role in microglial phenotype polarization, which might account for the NgR knockdown in the perforant path initiated a decrease in neuronal death and improved synaptic function. Our study provided a better understanding of the perforant path and the role of NgR in AD pathogenesis, thus offering the potential application of hippocampal neurons in treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Vía Perforante , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Vía Perforante/metabolismo , Vía Perforante/patología , Receptor Nogo 1/metabolismo
9.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614304

RESUMEN

Cervical carcinoma (CC) is the second most prevalent gynecologic cancer in females across the world. To obtain a better understanding of the mechanisms underlying the development of CC, high-resolution label-free mass spectrometry was performed on CC and adjacent normal tissues from eight patients. A total of 2631 proteins were identified, and 46 significant differently expressed proteins (DEPs) were found between CC and normal tissues (p < 0.01, fold change >10 or <0.1). Ingenuity pathway analysis revealed that the majority of the proteins were involved in the regulation of eIF4 and p70S6K signaling and mTOR signaling. Among 46 DEPs, Integrinß6 (ITGB6), PPP1CB, TMPO, PTGES3 (P23) and DTX3L were significantly upregulated, while Desmin (DES) was significantly downregulated in CC tissues compared with the adjacent normal tissues. In in vivo and in vitro experiments, DTX3L knockdown suppressed CC cell proliferation, migration, invasion and xenograft tumorigenesis, and enhanced cell apoptosis. Combination of silencing DTX3L and cisplatin treatment induced higher apoptosis percentage compared to cisplatin treatment alone. Moreover, DTX3L silencing inhibited the PI3K/AKT/mTOR signal pathway. Thus, our results suggested DTX3L could regulate CC progression through the PI3K/AKT/mTOR signal pathway and is potentially a novel biomarker and therapeutic target for CC.


Asunto(s)
Carcinoma , Silenciador del Gen , Ubiquitina-Proteína Ligasas , Neoplasias del Cuello Uterino , Femenino , Humanos , Apoptosis/genética , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Cisplatino , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitina-Proteína Ligasas/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
10.
Brain Res Bull ; 190: 195-203, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191729

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease. The main pathological feature is the degeneration and loss of dopaminergic neurons in the substantia nigra, which leads to the significant decrease of dopamine content in the striatum. Our recent studies have shown that scorpion venom heat-resistant synthetic peptide (SVHRSP) have protective effects on neuroinflammation. In this study, using C. elegans induced by 6-hydroxydopamine (6-OHDA) as neurodegenerative model, we investigated the effect of SVHRSP on dopaminergic neurons neurotoxicity. Our results implied that SVHRSP treatment could improve the motor capacity in 6-OHDA-induced C. elegans and improve dopaminergic neuron mediated food sensitivity behavior. After SVHRSP treatment, dopaminergic neuron degeneration induced by 6-OHDA was significantly prevented along with a decreased α-synuclein aggregation and restored lipid deposition in C. elegans induced by 6-OHDA. We also observed the reduced levels of reactive oxygen species (ROS) after SVHRSP treatment in model-building C. elegans. In addition, the genes related to apoptosis, oxidative stress, like ctl-1, egl-1and cat-2 in C. elegans induced by 6-OHDA upregulated after treatment with SVHRSP. In conclusion, SVHRSP may impose anti-PD effect through its neuroprotective action on dopaminergic neurons. This study elucidates the effect and related mechanism of SVHRSP on PD and provides evidences for the therapeutic treatment of PD.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Venenos de Escorpión , Animales , Oxidopamina/toxicidad , Neuronas Dopaminérgicas , Caenorhabditis elegans/genética , Venenos de Escorpión/farmacología , Venenos de Escorpión/uso terapéutico , Enfermedades Neurodegenerativas/patología , Calor , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Dopamina/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Péptidos/farmacología , Modelos Animales de Enfermedad
11.
J Am Chem Soc ; 144(37): 16755-16760, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36085555

RESUMEN

The toxicity, corrosiveness, and volatility of elemental bromine presents challenges for its safe storage and transportation. Purification from other halogens is also difficult. Here, we report an easy-to-prepare calix[4]pyrrole-based azo-bridged porous organic polymer (C4P-POP) that supports efficient bromine capture. C4P-POP was found to capture bromine as a vapor and from a cyclohexane source phase with maximum uptake capacities of 3.6 and 3.4 g·g-1, respectively. Flow-through adsorption experiments revealed that C4P-POP removes 80% of the bromine from a 4.0 mM cyclohexane solution at a flow rate of 45 mL·h-1. C4P-POP also allowed the selective capture of bromine from a 1:1 mixture of bromine and iodine in cyclohexane.


Asunto(s)
Bromo , Yodo , Ciclohexanos , Halógenos , Polímeros , Porosidad , Pirroles
12.
Exp Eye Res ; 223: 109201, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35940240

RESUMEN

The degeneration of the optic nerve narrows the visual field, eventually causing overall vision loss. This study aimed to identify global protein changes in the retina of optic nerve crushing (ONC) mice and to identify key regulators and pathways involved in injury-induced cell death during the progression of optic neurodegeneration. Label-free quantitative proteomics combined with bioinformatic analysis was performed on retinal protein extracts from ONC and sham-operated mice. Among the 1433 proteins detected, 121 proteins were differentially expressed in the retina of ONC mice. Further bioinformatic analysis showed that various metabolic pathways, including glutamate metabolism and γ-aminobutyric acid (GABA) synthesis, were significantly dysregulated in the injured mouse retinas. Glutamate decarboxylase 1 (GAD1) is the enzyme that converts glutamate into GABA, which was significantly up-regulated during ONC injury. Exogenous GAD1 treatment increased retinal ganglion cell (RGC) survival in the ONC-injured retina. In addition, changes in GAD1 expression were also observed in several other ophthalmic diseases. Vascular endothelial growth factor B (VEGF-B) has previously been reported to protect RGCs from apoptosis and positively regulated the expression of GAD1 in the retina. Notably, combination treatment with GAD1 and VEGF-B also provided strong protection against injury-induced RGC apoptosis. These results suggest that GAD1 expression may serve as an intrinsic protective mechanism that is commonly activated during retinal injury. Targeting GAD1 may serve as a potential strategy to treat optic neurodegenerative diseases.


Asunto(s)
Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Animales , Apoptosis/fisiología , Modelos Animales de Enfermedad , Glutamato Descarboxilasa , Glutamatos/metabolismo , Ratones , Compresión Nerviosa , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor B de Crecimiento Endotelial Vascular/metabolismo , Ácido gamma-Aminobutírico/metabolismo
13.
Proteomics Clin Appl ; 16(4): e2100127, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35435317

RESUMEN

BACKGROUND: Keloid is a pathological skin scar formation with complex and unclear molecular pathology mechanism. Novel biomarkers and associated mechanisms are needed to improve current therapies. OBJECTIVES: To identify novel biomarkers and underlying pathological mechanisms of keloids. METHODS: Six pairs of keloid scar tissues and corresponding normal skin tissues were quantitatively analyzed by a high-resolution label-free mass spectrometry-based proteomics approach. Differential protein expression data was further analyzed by a comprehensive bioinformatics approach to identify novel biomarkers and mechanistic pathways for keloid formation. Candidate biomarkers were validated experimentally. RESULTS: In total, 1359 proteins were identified by proteomic analysis. Of these, 206 proteins exhibited a significant difference in expression between keloid scar and normal skin tissues. RCN3 and CALU were significantly upregulated in keloids. RCN1 and PDGFRL were uniquely expressed in keloids. Pathway analysis suggested that the XBP1-mediated unfolded protein response (UPR) pathway was involved in keloid formation. Moreover, a PDGFRL centric gene coexpression network was constructed to illustrate its function in skin. CONCLUSIONS AND CLINICAL RELEVANCE: Our study proposed four novel biomarkers and highlighted the role of XBP1-mediated UPR pathway in the pathology of keloids. It provided novel biological insights that contribute to develop novel therapeutic strategies for keloids.


Asunto(s)
Queloide , Biomarcadores/metabolismo , Redes Reguladoras de Genes , Humanos , Queloide/genética , Queloide/metabolismo , Queloide/patología , Proteínas/genética , Proteómica , Piel/metabolismo , Piel/patología
14.
J Am Chem Soc ; 144(1): 113-117, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34962800

RESUMEN

The ability to capture radioactive iodine species is crucial for nuclear accident preparedness and nuclear waste treatment; however, it remains a challenge. Here we report a new readily obtainable nitrogen-rich nonporous cage (BPy-Cage) based on bipyridine building blocks that supports iodine capture. This cage is able to capture not only volatile iodine in vapor form but also iodine dissolved in various organic solvents or aqueous media with an iodine uptake capacity of up to 3.23 g g-1. The iodine within the cage (I2@BPy-Cage) can be released quickly upon immersing the bound solid form in DMF, allowing for control over acylation reactions. The cage solids reported here could be reused several times without substantial loss in their iodine capture performance. The effectiveness of the present system is ascribed to its ability to support strong iodine-bipyridine nitrogen lone pair interactions.

15.
J Am Chem Soc ; 143(45): 18849-18853, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34748331

RESUMEN

The use of molecular crystalline materials for the separation and purification of chemical raw materials, particularly polar compounds with similar physical and chemical properties, represents an ongoing challenge. This is particularly true for volatile feedstocks that form binary azeotropes. Here we report a new cavity-extended version of calix[4]pyrrole (C4P) that readily forms nonporous adaptive crystals (NACs). These C4P-based NACs allow pyridine to be separated from toluene/pyridine mixtures with nearly 100% purity, as well as the removal of 1,4-dioxane from 1,4-dioxane/water mixtures with high adsorption capacity. Removal of the polar guest (pyridine or 1,4-dioxane) from the guest-loaded NACs by heating under vacuum produces the guest-free crystalline form. In the case of both guests, the C4P material could be reused as demonstrated through 10 uptake and release cycles without apparent performance loss.

16.
Molecules ; 26(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919472

RESUMEN

The design and synthesis of novel macrocyclic host molecules continues to attract attention because such species play important roles in supramolecular chemistry. However, the discovery of new classes of macrocycles presents a considerable challenge due to the need to embody by design effective molecular recognition features, as well as ideally the development of synthetic routes that permit further functionalization. In 2010, we reported a new class of macrocyclic hosts: a set of tetracationic imidazolium macrocycles, which we termed "Texas-sized" molecular boxes (TxSBs) in homage to Stoddart's classic "blue box" (CBPQT4+). Compared with the rigid blue box, the first generation TxSB displayed considerably greater conformational flexibility and a relatively large central cavity, making it a good host for a variety of electron-rich guests. In this review, we provide a comprehensive summary of TxSB chemistry, detailing our recent progress in the area of anion-responsive supramolecular self-assembly and applications of the underlying chemistry to water purification, information storage, and controlled drug release. Our objective is to provide not only a review of the fundamental findings, but also to outline future research directions where TxSBs and their constructs may have a role to play.

17.
J Am Chem Soc ; 141(37): 14798-14806, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31437397

RESUMEN

We report here the fluorescent sensing of both aromatic and linear saturated dicarboxylate anions (DC2-) (as their tetrabutylammonium salts) with different lengths and shapes in acetonitrile using a single fluorescent probe, i.e., the bis-calix[4]pyrrole-appended 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC-bisC4P) incorporating a vibration-induced emission (VIE) phenazine core. Fluorescence titration studies revealed that treating DPAC-bisC4P with dicarboxylate guests capable of forming pseudomacrocyclic host-guest complexes via multiple hydrogen-bonding interactions between the dicarboxylates and calix[4]pyrrole moieties led to a blue-shift in the emission of the phenazine core. The binding-based fluorescence-tuning features of DPAC-bisC4P allow the underlying binding events and inferred structural changes to be monitored in the form of different chromaticity outputs. The analyte-induced differences in the fluorescence response to DC2- cover a wide range within the chromaticity diagram and can be visualized readily. The present system thus functions as a rudimentary dicarboxylate anion sensor. It highlights the potential benefits associated with combining a tunable VIE core with noncovalent binding interactions and thus sets the stage for the development of new fluorescent chemosensors where a single chemical entity responds to different analytes with a high level of tunability.

18.
Acc Chem Res ; 52(7): 1915-1927, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31184471

RESUMEN

Soft materials have received considerable attention from supramolecular chemists and material scientists alike. This interest reflects the advantages provided by their soft, flexible nature and the convenience of the molecular self-assembly that underlies their preparation. Common soft supramolecular materials include polymeric gels, supramolecular polymers, nanoaggregates, and membranes. Polymeric gels are solidlike networks of cross-linked polymer chains. Supramolecular polymers contain repeat units connected through reversible non-covalent bonds. Nanoaggregates are formed as a result of hydrophobic interactions involving amphiphilic building blocks. Because of the presence of non-covalent interactions, supramolecular soft materials typically display stimuli-responsive or adaptive features. Various macrocyclic hosts, such as cyclodextrins, crown ethers, calixarenes, cucurbiturils, and pillararenes, and many classic non-covalent interactions have been harnessed to construct supramolecular soft materials. Only recently has anion binding been used as the underlying recognition motif. Anions are ubiquitous in the natural world. Their importance has inspired efforts to achieve good anion binding and to exploit anion recognition in a number of fields, including extraction, transport, sensing, and catalysis. Most of this effort has involved the use of stand-alone anion receptors. On the other hand, soft materials with anion recognition features could lead to new macromolecular systems of interest in the context of many application areas. In this Account, we summarize the latest efforts from our laboratory to prepare supramolecular soft materials, including polymeric gels, supramolecular polymers, and nanoaggregates, with bona fide anion recognition features. Two anion receptor systems, namely, calix[4]pyrroles (C4Ps) and a tetraimidazolium macrocycle known as the "Texas-sized" molecular box (TxSB), have been used for this purpose. To date, TxSB-based hydrogels have been utilized to capture anions from water and for coded information applications; C4P-based organic polymeric gels have been used to extract dianions from aqueous source phases and for the on-site detection of chloride anions. Polymers containing C4P and TxSB anion recognition subunits typically display responsive features and can be modified through application of appropriately chosen external stimuli. For instance, nanoaggregates may be formed as a result of the hydrophobic interactions of C4P- and TxSB-based amphiphiles. The resulting aggregates were found to mimic the structural evolution of organelles and could be used as effective anion and ion pair extractants. This Account summarizes progress to date while underscoring potential opportunities associated with combining anion recognition and soft materials chemistry. The hope is to stimulate further advances in broad areas, including polymer science, supramolecular chemistry, biology, materials research, and information storage.

19.
Inorg Chem ; 58(12): 7886-7894, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31125214

RESUMEN

Reported here are new platinum(IV) (Pt(IV)) complexes bearing ferrocene (Fc) moieties. These systems differ from one another only by the nature of the functional group (ester vs amide) connecting the linker to the Fc subunits. This minor structural variation (one atom difference) leads to major differences in solubility, stability, and antiproliferative activity against lung (A549) cancer cells. The host-guest chemistry of these complexes was investigated in an aqueous medium in the presence of ß-cyclodextrins (ß-CD), either free or in the form of a covalently linked Fc-Pt-ß-CD hybrid. An inclusion complex between Fc and ß-CD is formed in aqueous media, presumably as a result of hydrophobic interactions involving the Fc and the inner ß-CD cavity. Consequently, it proved possible to use a ß-CD-based strategy to purify the Pt-Fc conjugates in this study under aqueous conditions (by means of C18 silica gel columns). The use of a ß-CD adjuvant also allowed dimethyl sulfoxide (DMSO) to be avoided as an organic cosolvent in cell studies. The amide version reported here (2) proved to be more soluble, more stable, and more active than the ester analogue (11) in A549 cells. The use of a ß-CD functionalized with a fluorescent probe allowed intracellular Pt-Fc localization to be visualized by confocal fluorescence microscopy.

20.
J Am Chem Soc ; 141(16): 6468-6472, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-30957995

RESUMEN

We report an expanded "Texas-sized" molecular box (AzoTxSB) that incorporates photoresponsive azobenzene bridging subunits and anion recognition motifs. The shape of this box can be switched through light induced E ↔ Z photoisomerization of the constituent azobenzenes. This allows various anionic substrates to be bound and released by using different forms of the box. Control can also be achieved using other environmental stimuli, such as pH and anion competition.


Asunto(s)
Compuestos Azo/química , Aniones/química , Compuestos Azo/síntesis química , Concentración de Iones de Hidrógeno , Estructura Molecular , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA