Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(26): 6338-6351, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38903016

RESUMEN

Ceramide transfer protein CERT is the mediator of nonvesicular transfer of ceramide from the ER to Golgi. In CERT, START is the domain responsible for the binding and transport of ceramide. A wealth of structural data has revealed a helix-grip fold surrounding a large hydrophobic cavity holding the ceramide. Yet, little is known about the mechanisms by which START releases the ceramide through the polar region and into the packed environment of cellular membranes. As such events do not lend themselves easily to experimental investigations, we used multiple unbiased microsecond-long molecular simulations. We propose a membrane-assisted mechanism in which the membrane acts as an allosteric effector initiating the release of ceramide and where the passage of the ceramide acyl chains is facilitated by the intercalation of a single phosphatidylcholine lipid in the cavity, practically greasing the ceramide way out. We verify using free energy calculation and experimental lipidomics data that CERT forms stable complexes with phosphatidylcholine lipids, in addition to ceramide, thus providing validation for the proposed mechanism.


Asunto(s)
Ceramidas , Simulación de Dinámica Molecular , Ceramidas/química , Fosfatidilcolinas/química , Humanos , Dominios Proteicos , Termodinámica , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas Serina-Treonina Quinasas
2.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446392

RESUMEN

Hydroxylysine glycosylations are post-translational modifications (PTMs) essential for the maturation and homeostasis of fibrillar and non-fibrillar collagen molecules. The multifunctional collagen lysyl hydroxylase 3 (LH3/PLOD3) and the collagen galactosyltransferase GLT25D1 are the human enzymes that have been identified as being responsible for the glycosylation of collagen lysines, although a precise description of the contribution of each enzyme to these essential PTMs has not yet been provided in the literature. LH3/PLOD3 is thought to be capable of performing two chemically distinct collagen glycosyltransferase reactions using the same catalytic site: an inverting beta-1,O-galactosylation of hydroxylysines (Gal-T) and a retaining alpha-1,2-glucosylation of galactosyl hydroxylysines (Glc-T). In this work, we have combined indirect luminescence-based assays with direct mass spectrometry-based assays and molecular structure studies to demonstrate that LH3/PLOD3 only has Glc-T activity and that GLT25D1 only has Gal-T activity. Structure-guided mutagenesis confirmed that the Glc-T activity is defined by key residues in the first-shell environment of the glycosyltransferase catalytic site as well as by long-range contributions from residues within the same glycosyltransferase (GT) domain. By solving the molecular structures and characterizing the interactions and solving the molecular structures of human LH3/PLOD3 in complex with different UDP-sugar analogs, we show how these studies could provide insights for LH3/PLOD3 glycosyltransferase inhibitor development. Collectively, our data provide new tools for the direct investigation of collagen hydroxylysine PTMs and a comprehensive overview of the complex network of shapes, charges, and interactions that enable LH3/PLOD3 glycosyltransferase activities, expanding the molecular framework and facilitating an improved understanding and manipulation of glycosyltransferase functions in biomedical applications.


Asunto(s)
Glicosiltransferasas , Hidroxilisina , Humanos , Glicosiltransferasas/genética , Hidroxilisina/metabolismo , Glicosilación , Colágeno/metabolismo , Lisina/metabolismo
3.
Front Mol Biosci ; 9: 876352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090047

RESUMEN

Multifunctional human collagen lysyl hydroxylase (LH/PLOD) enzymes catalyze post-translational hydroxylation and subsequent glycosylation of collagens, enabling their maturation and supramolecular organization in the extracellular matrix (ECM). Recently, the overexpression of LH/PLODs in the tumor microenvironment results in abnormal accumulation of these collagen post-translational modifications, which has been correlated with increased metastatic progression of a wide variety of solid tumors. These observations make LH/PLODs excellent candidates for prospective treatment of aggressive cancers. The recent years have witnessed significant research efforts to facilitate drug discovery on LH/PLODs, including molecular structure characterizations and development of reliable high-throughput enzymatic assays. Using a combination of biochemistry and in silico studies, we characterized the dual role of Fe2+ as simultaneous cofactor and inhibitor of lysyl hydroxylase activity and studied the effect of a promiscuous Fe2+ chelating agent, 2,2'-bipyridil, broadly considered a lysyl hydroxylase inhibitor. We found that at low concentrations, 2,2'-bipyridil unexpectedly enhances the LH enzymatic activity by reducing the inhibitory effect of excess Fe2+. Together, our results show a fine balance between Fe2+-dependent enzymatic activity and Fe2+-induced self-inhibited states, highlighting exquisite differences between LH/PLODs and related Fe2+, 2-oxoglutarate dioxygenases and suggesting that conventional structure-based approaches may not be suited for successful inhibitor development. These insights address outstanding questions regarding druggability of LH/PLOD lysyl hydroxylase catalytic site and provide a solid ground for upcoming drug discovery and screening campaigns.

4.
Nat Commun ; 12(1): 4872, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381052

RESUMEN

The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B's necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis.


Asunto(s)
Apoptosis , Vasos Sanguíneos/crecimiento & desarrollo , Receptores de Netrina/metabolismo , Isoformas de ARN/metabolismo , Empalme Alternativo , Animales , Neoplasias del Colon/irrigación sanguínea , Neoplasias del Colon/metabolismo , Células Endoteliales , Humanos , Morfogénesis , Neovascularización Patológica/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores de Netrina/genética , Netrina-1/metabolismo , Antígeno Ventral Neuro-Oncológico , Isoformas de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Supervivencia , Pez Cebra
5.
Bio Protoc ; 11(8): e3998, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34124299

RESUMEN

Recombinant proteins are an essential milestone for a plethora of different applications ranging from pharmaceutical to clinical, and mammalian cell lines are among the currently preferred systems to obtain large amounts of proteins of interest due to their high level of post-translational modification and manageable large-scale production. In this regard, human embryonic kidney 293 (HEK293) cells constitute one of the main standard lab-scale mammalian hosts for recombinant protein production since these cells are relatively easy to handle, scale-up, and transfect. Here, we present a detailed protocol for the cost-effective, reproducible, and scalable implementation of HEK293 cell cultures in suspension (suitable for commercially available HEK293 cells, HEK293-F) for high-quantity recombinant production of secreted soluble multi-domain proteins. In addition, the protocol is optimized for a Monday-to-Friday maintenance schedule, thus simplifying and streamlining the work of operators responsible for cell culture maintenance. Graphic abstract: Schematic overview of the workflow described in this protocol.

6.
Elife ; 92020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33357379

RESUMEN

Protein O-mannosyltransferases (PMTs) represent a conserved family of multispanning endoplasmic reticulum membrane proteins involved in glycosylation of S/T-rich protein substrates and unfolded proteins. PMTs work as dimers and contain a luminal MIR domain with a ß-trefoil fold, which is susceptive for missense mutations causing α-dystroglycanopathies in humans. Here, we analyze PMT-MIR domains by an integrated structural biology approach using X-ray crystallography and NMR spectroscopy and evaluate their role in PMT function in vivo. We determine Pmt2- and Pmt3-MIR domain structures and identify two conserved mannose-binding sites, which are consistent with general ß-trefoil carbohydrate-binding sites (α, ß), and also a unique PMT2-subfamily exposed FKR motif. We show that conserved residues in site α influence enzyme processivity of the Pmt1-Pmt2 heterodimer in vivo. Integration of the data into the context of a Pmt1-Pmt2 structure and comparison with homologous ß-trefoil - carbohydrate complexes allows for a functional description of MIR domains in protein O-mannosylation.


Asunto(s)
Manosiltransferasas/química , Conformación Proteica , Animales , Glicosilación , Humanos , Dominios Proteicos
7.
Elife ; 82019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30829570

RESUMEN

The biological players involved in angiogenesis are only partially defined. Here, we report that endothelial cells (ECs) express a novel isoform of the cell-surface adhesion molecule L1CAM, termed L1-ΔTM. The splicing factor NOVA2, which binds directly to L1CAM pre-mRNA, is necessary and sufficient for the skipping of L1CAM transmembrane domain in ECs, leading to the release of soluble L1-ΔTM. The latter exerts high angiogenic function through both autocrine and paracrine activities. Mechanistically, L1-ΔTM-induced angiogenesis requires fibroblast growth factor receptor-1 signaling, implying a crosstalk between the two molecules. NOVA2 and L1-ΔTM are overexpressed in the vasculature of ovarian cancer, where L1-ΔTM levels correlate with tumor vascularization, supporting the involvement of NOVA2-mediated L1-ΔTM production in tumor angiogenesis. Finally, high NOVA2 expression is associated with poor outcome in ovarian cancer patients. Our results point to L1-ΔTM as a novel, EC-derived angiogenic factor which may represent a target for innovative antiangiogenic therapies.


Asunto(s)
Empalme Alternativo , Proteínas Angiogénicas/metabolismo , Células Endoteliales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Cultivadas , Humanos , Antígeno Ventral Neuro-Oncológico
8.
Nat Commun ; 9(1): 3912, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237434

RESUMEN

The previously published version of this Article contained an error in Figure 3. In panel a, the residues His667 and Asp669 were incorrectly labelled as His627 and Asp629. The error has been corrected in both the PDF and HTML versions of the Article.

9.
Nat Commun ; 9(1): 3163, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089812

RESUMEN

Lysyl hydroxylases catalyze hydroxylation of collagen lysines, and sustain essential roles in extracellular matrix (ECM) maturation and remodeling. Malfunctions in these enzymes cause severe connective tissue disorders. Human lysyl hydroxylase 3 (LH3/PLOD3) bears multiple enzymatic activities, as it catalyzes collagen lysine hydroxylation and also their subsequent glycosylation. Our understanding of LH3 functions is currently hampered by lack of molecular structure information. Here, we present high resolution crystal structures of full-length human LH3 in complex with cofactors and donor substrates. The elongated homodimeric LH3 architecture shows two distinct catalytic sites at the N- and C-terminal boundaries of each monomer, separated by an accessory domain. The glycosyltransferase domain displays distinguishing features compared to other known glycosyltransferases. Known disease-related mutations map in close proximity to the catalytic sites. Collectively, our results provide a structural framework characterizing the multiple functions of LH3, and the molecular mechanisms of collagen-related diseases involving human lysyl hydroxylases.


Asunto(s)
Glicosiltransferasas/química , Glicosiltransferasas/fisiología , Estructura Molecular , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/química , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/fisiología , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico/genética , Dominio Catalítico/fisiología , Colágeno/metabolismo , Cristalografía por Rayos X , Dimerización , Activación Enzimática , Pruebas de Enzimas , Glicosiltransferasas/genética , Células HEK293 , Células HeLa , Humanos , Hidroxilación , Lisina/metabolismo , Modelos Moleculares , Proteínas Mutantes/genética , Mutación , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes
10.
Prog Lipid Res ; 61: 30-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26658141

RESUMEN

Within the eukaryotic cell, more than 1000 species of lipids define a series of membranes essential for cell function. Tightly controlled systems of lipid transport underlie the proper spatiotemporal distribution of membrane lipids, the coordination of spatially separated lipid metabolic pathways, and lipid signaling mediated by soluble proteins that may be localized some distance away from membranes. Alongside the well-established vesicular transport of lipids, non-vesicular transport mediated by a group of proteins referred to as lipid-transfer proteins (LTPs) is emerging as a key mechanism of lipid transport in a broad range of biological processes. More than a hundred LTPs exist in humans and these can be divided into at least ten protein families. LTPs are widely distributed in tissues, organelles and membrane contact sites (MCSs), as well as in the extracellular space. They all possess a soluble and globular domain that encapsulates a lipid monomer and they specifically bind and transport a wide range of lipids. Here, we present the most recent discoveries in the functions and physiological roles of LTPs, which have expanded the playground of lipids into the aqueous spaces of cells.


Asunto(s)
Proteínas Portadoras/fisiología , Metabolismo de los Lípidos , Transducción de Señal , Animales , Membrana Celular/fisiología , Retículo Endoplásmico/fisiología , Aparato de Golgi/fisiología , Humanos , Transporte de Proteínas
11.
Nat Protoc ; 9(9): 2256-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25167057

RESUMEN

Interactions between lipids and proteins in the aqueous phases of cells contribute to many aspects of cell physiology. Here we describe a detailed protocol to systematically characterize in vivo-assembled complexes of soluble proteins and lipids. Saccharomyces cerevisiae strains expressing physiological amounts of a protein of interest fused to the tandem-affinity purification (TAP) tag are first lysed in the absence of detergent to capture intact protein-lipid complexes. The affinity-purified complexes (typically 30-50 kDa) are subjected to analytical size-exclusion chromatography (SEC) to remove contaminating lipids that elute at the void volume (>600 kDa), in order to achieve sufficient signal-to-background lipid ratios. Proteins in the SEC fractions are then analyzed by denaturing gel electrophoresis. Lipidomics techniques such as high-performance thin-layer chromatography or gas or liquid chromatography-mass spectrometry can then be applied to measure the elution profiles of lipids and to pinpoint the true interactors co-eluting with the TAP fusions. The procedure (starting from cell lysis) requires 2 d, and it can easily be adapted to other organisms.


Asunto(s)
Técnicas de Química Analítica/métodos , Lípidos/química , Sustancias Macromoleculares/aislamiento & purificación , Proteínas/química , Saccharomyces cerevisiae/química , Cromatografía en Gel/métodos , Cromatografía en Capa Delgada , Electroforesis en Gel de Gradiente Desnaturalizante/métodos , Cromatografía de Gases y Espectrometría de Masas , Marcaje Isotópico/métodos , Lípidos/aislamiento & purificación , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Agua
12.
Nature ; 501(7466): 257-61, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23934110

RESUMEN

The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.


Asunto(s)
Fosfatidilserinas/metabolismo , Mapas de Interacción de Proteínas , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Dislipidemias/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Humanos , Síndrome Metabólico/metabolismo , Neoplasias/metabolismo , Filogenia , Receptores de Esteroides/química , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
13.
J Pharm Biomed Anal ; 67-68: 104-13, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22608096

RESUMEN

A simple liquid chromatographic tandem mass spectrometry (LC-MS/MS) method has been developed for simultaneous analysis of 17 basic and one acid psychotropic drugs in human plasma. The method relies on a protein precipitation step for sample preparation and offers high sensitivity, wide linearity without interferences from endogenous matrix components. Chromatography was run on a reversed-phase column with an acetonitrile-H2O mixture. The quantification of target compounds was performed in multiple reaction monitoring (MRM) and by switching the ionization polarity within the analytical run. A further sensitivity increase was obtained by implementing the functionality "scheduled multiple reaction monitoring" (sMRM) offered by the recent version of the software package managing the instrument. The overall injection interval was less than 5.5 min. Regression coefficients of the calibration curves and limits of quantification (LOQ) showed a good coverage of over-therapeutic, therapeutic and sub-therapeutic ranges. Recovery rates, measured as percentage of recovery of spiked plasma samples, were ≥ 94%. Precision and accuracy data have been satisfactory for a therapeutic drug monitoring (TDM) service as for managing plasma samples from patients receiving psycho-pharmacological treatment.


Asunto(s)
Antipsicóticos/sangre , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Antipsicóticos/uso terapéutico , Calibración , Cromatografía Liquida , Humanos , Trastornos Mentales/sangre , Trastornos Mentales/tratamiento farmacológico , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...