Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7264, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456560

RESUMEN

Liquid crystal (LC) phases are in between solids and liquids with properties of both. Nematic LCs composed of rod-like molecules or particles exhibit long-range orientational order, yielding characteristic birefringence, but they lack positional order, allowing them to flow like a liquid. This combination of properties as well as their sensitivity to external fields make nematic LCs fundamental for optical applications e.g. liquid crystal displays (LCDs). When rod-like particles become bent, spontaneous bend deformations arise in the LC, leading to geometric frustration which can be resolved by complementary twist or splay deformations forming intriguing twist-bend (NTB) and splay-bend (NSB) nematic phases. Here, we show experimentally that the elusive NSB phases can be stabilized in systems of polydisperse micron-sized bent silica rods. Our results open avenues for the realization of NTB and NSB phases of colloidal and molecular LCs.

2.
J Chem Phys ; 156(1): 014904, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34998357

RESUMEN

Cellulose nanocrystals (CNCs) are naturally sourced elongated nanocolloids that form cholesteric phases in water and apolar solvents. It is well accepted that CNCs are made of bundles of crystalline microfibrils clustered side-by-side, and there is growing evidence that each individual microfibril is twisted. Yet, the origin of the chiral interactions between CNCs remains unclear. In this work, CNCs are described with a simple model of chiral hard splinters, enabling the prediction of the pitch using density functional theory and Monte Carlo simulations. The predicted pitch P compares well with experimental observations in cotton-based CNC dispersions in apolar solvents using surfactants but also with qualitative trends caused by fractionation or tip sonication in aqueous suspensions. These results suggest that the bundle shape induces an entropy-driven chiral interaction between CNCs, which is the missing link in explaining how chirality is transferred from the molecular scale of cellulose chains to the cholesteric order.

3.
Nat Commun ; 12(1): 2157, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846326

RESUMEN

In 1976, Meyer predicted that bend distortions of the nematic director field are complemented by deformations of either twist or splay, yielding twist-bend and splay-bend nematic phases, respectively. Four decades later, the existence of the splay-bend nematic phase remains dubious, and the origin of these spontaneous distortions uncertain. Here, we conjecture that bend deformations of the nematic director can be complemented by simultaneous distortions of both twist and splay, yielding a twist-splay-bend nematic phase. Using theory and simulations, we show that the coupling between polar order and bend deformations drives the formation of modulated phases in systems of curved rods. We find that twist-bend phases transition to splay-bend phases via intermediate twist-splay-bend phases, and that splay distortions are always accompanied by periodic density modulations due to the coupling of the particle curvature with the non-uniform curvature of the splayed director field, implying that the twist-splay-bend and splay-bend phases of banana-shaped particles are actually smectic phases.

4.
Nat Mater ; 20(4): 541-547, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33510444

RESUMEN

Periodic nano- or microscale structures are used to control light, energy and mass transportation. Colloidal organization is the most versatile method used to control nano- and microscale order, and employs either the enthalpy-driven self-assembly of particles at a low concentration or the entropy-driven packing of particles at a high concentration. Nonetheless, it cannot yet provide the spontaneous three-dimensional organization of multicomponent particles at a high concentration. Here we combined these two concepts into a single strategy to achieve hierarchical multicomponent materials. We tuned the electrostatic attraction between polymer and silica nanoparticles to create dynamic supracolloids whose components, on drying, reorganize by entropy into three-dimensional structured materials. Cryogenic electron tomography reveals the kinetic pathways, whereas Monte Carlo simulations combined with a kinetic model provide design rules to form the supracolloids and control the kinetic pathways. This approach may be useful to fabricate hierarchical hybrid materials for distinct technological applications.

5.
Phys Rev E ; 102(4-1): 040601, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33212681

RESUMEN

Uniaxial rods in a nematic phase diffuse preferentially in the direction parallel to the nematic director n[over ̂]. The nematic director field n[over ̂](r) of a chiral twist-bend nematic (N_{TB}) phase of achiral banana-shaped particles, recently discovered experimentally, displays a heliconical twist of given handedness and periodicity. Using simulations, we investigate the long-time macroscopic diffusion in N_{TB} phases, and find that the predilection of curved rods to diffuse in the direction of the twisting n[over ̂](r) yields a fascinating chiral dynamics along helices, even though achiral curved rods display Brownian motion with a nontrivial rototranslational coupling. We devise a machine learning protocol to characterize the helicoidal particle trajectories, finding that their pitch and radius are determined by the pitch and conical angle of the N_{TB} phase thereby connecting its structural and dynamical properties.

6.
Science ; 369(6506): 950-955, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32820121

RESUMEN

Understanding the impact of curvature on the self-assembly of elongated microscopic building blocks, such as molecules and proteins, is key to engineering functional materials with predesigned structure. We develop model "banana-shaped" colloidal particles with tunable dimensions and curvature, whose structure and dynamics are accessible at the particle level. By heating initially straight rods made of SU-8 photoresist, we induce a controllable shape deformation that causes the rods to buckle into banana-shaped particles. We elucidate the phase behavior of differently curved colloidal bananas using confocal microscopy. Although highly curved bananas only form isotropic phases, less curved bananas exhibit very rich phase behavior, including biaxial nematic phases, polar and antipolar smectic-like phases, and even the long-predicted, elusive splay-bend nematic phase.

7.
Phys Rev Lett ; 124(8): 087801, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167355

RESUMEN

Using simulations, we study the diffusion of rodlike guest particles in a smectic environment of rodlike host particles. We find that the dynamics of guest rods across smectic layers changes from a fast nematiclike diffusion to a slow hopping-type dynamics via an intermediate switching regime by varying the length of the guest rods with respect to the smectic layer spacing. We determine the optimal rod length that yields the fastest and the slowest diffusion in a lamellar environment. We show that this behavior can be rationalized by a complex 1D effective periodic potential exhibiting two energy barriers, resulting in a varying preferred mean position of the guest particle in the smectic layer. The interplay of these two barriers controls the dynamics of the guest particles yielding a slow, an intermediate, and a fast diffusion regime depending on the particle length.

8.
Phys Rev Lett ; 123(6): 068001, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491177

RESUMEN

We perform an extensive computational study on the phase behavior of hard banana-shaped particles, and show that biaxial, twist-bend, and splay-bend nematic phases are metastable with respect to a smectic phase for a system of hard bent spherocylinders. However, if the smectic phase is destabilized-either by polydispersity in the particle length or by curvature in the particle shape-stable biaxial, twist-bend, and splay-bend nematic phases are obtained. This provides a unified and consistent picture on the subtle role of particle shape on the phase behavior of bent rods.

9.
Eur Phys J E Soft Matter ; 40(1): 7, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28108886

RESUMEN

A new gel-forming colloidal system based on a binary mixture of fd-viruses and gold nanoparticles functionalized with complementary DNA single strands has been recently introduced. Upon quenching below the DNA melt temperature, such a system results in a highly porous gel state, that may be developed in a new functional material of tunable porosity. In order to shed light on the gelation mechanism, we introduce a model closely mimicking the experimental one and we explore via Monte Carlo simulations its equilibrium phase diagram. Specifically, we model the system as a binary mixture of hard rods and hard spheres mutually interacting via a short-range square-well attractive potential. In the experimental conditions, we find evidence of a phase separation occurring either via nucleation-and-growth or via spinodal decomposition. The spinodal decomposition leads to the formation of small clusters of bonded rods and spheres whose further diffusion and aggregation leads to the formation of a percolating network in the system. Our results are consistent with the hypothesis that the mixture of DNA-coated fd-viruses and gold nanoparticles undergoes a non-equilibrium gelation via an arrested spinodal decomposition mechanism.


Asunto(s)
Bacteriófago M13/química , ADN Complementario/química , Oro/química , Nanopartículas del Metal/química , Modelos Moleculares , Conformación Molecular , Método de Montecarlo , Transición de Fase , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...