Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37444642

RESUMEN

BACKGROUND: Liquid biopsies are revolutionary tools used to detect tumor-specific genetic alterations in body fluids, including the use of cell-free DNA (cfDNA) for molecular diagnosis in cancer patients. In brain tumors, cerebrospinal fluid (CSF) cfDNA might be more informative than plasma cfDNA. Here, we assess the use of CSF cfDNA in pediatric embryonal brain tumors (EBT) for molecular diagnosis. METHODS: The CSF cfDNA of pediatric patients with medulloblastoma (n = 18), ATRT (n = 3), ETMR (n = 1), CNS NB FOXR2 (n = 2) and pediatric EBT NOS (n = 1) (mean cfDNA concentration 48 ng/mL; range 4-442 ng/mL) and matched tumor genomic DNA were sequenced by WES and/or a targeted sequencing approach to determine single-nucleotide variations (SNVs) and copy number alterations (CNA). A specific capture covering transcription start sites (TSS) of genes of interest was also used for nucleosome footprinting in CSF cfDNA. RESULTS: 15/25 CSF cfDNA samples yielded informative results, with informative CNA and SNVs in 11 and 15 cases, respectively. For cases with paired tumor and CSF cfDNA WES (n = 15), a mean of 83 (range 1-160) shared SNVs were observed, including SNVs in classical medulloblastoma genes such as SMO and KMT2D. Interestingly, tumor-specific SNVs (mean 18; range 1-62) or CSF-specific SNVs (mean 5; range 0-25) were also observed, suggesting clonal heterogeneity. The TSS panel resulted in differential coverage profiles across all 112 studied genes in 7 cases, indicating distinct promoter accessibility. CONCLUSION: CSF cfDNA sequencing yielded informative results in 60% (15/25) of all cases, with informative results in 83% (15/18) of all cases analyzed by WES. These results pave the way for the implementation of these novel approaches for molecular diagnosis and minimal residual disease monitoring.

2.
JCO Precis Oncol ; 7: e2200113, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652664

RESUMEN

PURPOSE: Total cell-free DNA (cfDNA) and tumor-derived cfDNA (ctDNA) can be used to study tumor-derived genetic aberrations. We analyzed the diagnostic and prognostic potential of cfDNA and ctDNA, obtained from pediatric patients with rhabdomyosarcoma. METHODS: cfDNA was isolated from diagnostic plasma samples from 57 patients enrolled in the EpSSG RMS2005 study. To study the diagnostic potential, shallow whole genome sequencing (shWGS) and cell-free reduced representation bisulphite sequencing (cfRRBS) were performed in a subset of samples and all samples were tested using droplet digital polymerase chain reaction to detect methylated RASSF1A (RASSF1A-M). Correlation with outcome was studied by combining cfDNA RASSF1A-M detection with analysis of our rhabdomyosarcoma-specific RNA panel in paired cellular blood and bone marrow fractions and survival analysis in 56 patients. RESULTS: At diagnosis, ctDNA was detected in 16 of 30 and 24 of 26 patients using shallow whole genome sequencing and cfRRBS, respectively. Furthermore, 21 of 25 samples were correctly classified as embryonal by cfRRBS. RASSF1A-M was detected in 21 of 57 patients. The presence of RASSF1A-M was significantly correlated with poor outcome (the 5-year event-free survival [EFS] rate was 46.2% for 21 RASSF1A-M‒positive patients, compared with 84.9% for 36 RASSF1A-M‒negative patients [P < .001]). RASSF1A-M positivity had the highest prognostic effect among patients with metastatic disease. Patients both negative for RASSF1A-M and the rhabdomyosarcoma-specific RNA panel (28 of 56 patients) had excellent outcome (5-year EFS 92.9%), while double-positive patients (11/56) had poor outcome (5-year EFS 13.6%, P < .001). CONCLUSION: Analyzing ctDNA at diagnosis using various techniques is feasible in pediatric rhabdomyosarcoma and has potential for clinical use. Measuring RASSF1A-M in plasma at initial diagnosis correlated significantly with outcome, particularly when combined with paired analysis of blood and bone marrow using a rhabdomyosarcoma-specific RNA panel.


Asunto(s)
Ácidos Nucleicos Libres de Células , Rabdomiosarcoma , Humanos , Niño , Ácidos Nucleicos Libres de Células/genética , Pronóstico , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/genética , ARN , Biomarcadores
3.
JCO Precis Oncol ; 6: e2100534, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36265118

RESUMEN

PURPOSE: Rhabdomyosarcomas (RMS) are rare neoplasms affecting children and young adults. Efforts to improve patient survival have been undermined by a lack of suitable disease markers. Plasma circulating tumor DNA (ctDNA) has shown promise as a potential minimally invasive biomarker and monitoring tool in other cancers; however, it remains underexplored in RMS. We aimed to determine the feasibility of identifying and quantifying ctDNA in plasma as a marker of disease burden and/or treatment response using blood samples from RMS mouse models and patients. METHODS: We established mouse models of RMS and applied quantitative polymerase chain reaction (PCR) and droplet digital PCR (ddPCR) to detect ctDNA within the mouse plasma. Potential driver mutations, copy-number alterations, and DNA breakpoints associated with PAX3/7-FOXO1 gene fusions were identified in the RMS samples collected at diagnosis. Patient-matched plasma samples collected from 28 patients with RMS before, during, and after treatment were analyzed for the presence of ctDNA via ddPCR, panel sequencing, and/or whole-exome sequencing. RESULTS: Human tumor-derived DNA was detectable in plasma samples from mouse models of RMS and correlated with tumor burden. In patients, ctDNA was detected in 14/18 pretreatment plasma samples with ddPCR and 7/7 cases assessed by sequencing. Levels of ctDNA at diagnosis were significantly higher in patients with unfavorable tumor sites, positive nodal status, and metastasis. In patients with serial plasma samples (n = 18), fluctuations in ctDNA levels corresponded to treatment response. CONCLUSION: Comprehensive ctDNA analysis combining high sensitivity and throughput can identify key molecular drivers in RMS models and patients, suggesting potential as a minimally invasive biomarker. Preclinical assessment of treatments using mouse models and further patient testing through prospective clinical trials are now warranted.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Rabdomiosarcoma Embrionario , Humanos , Niño , Ratones , Animales , ADN Tumoral Circulante/genética , Estudios de Factibilidad , Estudios Prospectivos , Biomarcadores de Tumor/genética , Mutación
4.
Cancer Discov ; 12(5): 1266-1281, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35292802

RESUMEN

ABSTRACT: MAPPYACTS (NCT02613962) is an international prospective precision medicine trial aiming to define tumor molecular profiles in pediatric patients with recurrent/refractory malignancies in order to suggest the most adapted salvage treatment. From February 2016 to July 2020, 787 patients were included in France, Italy, Ireland, and Spain. At least one genetic alteration leading to a targeted treatment suggestion was identified in 436 patients (69%) with successful sequencing; 10% of these alterations were considered "ready for routine use." Of 356 patients with follow-up beyond 12 months, 107 (30%) received one or more matched targeted therapies-56% of them within early clinical trials-mainly in the AcSé-ESMART platform trial (NCT02813135). Overall, matched treatment resulted in a 17% objective response rate, and of those patients with ready for routine use alterations, it was 38%. In patients with extracerebral tumors, 76% of actionable alterations detected in tumor tissue were also identified in circulating cell-free DNA (cfDNA). SIGNIFICANCE: MAPPYACTS underlines the feasibility of molecular profiling at cancer recurrence in children on a multicenter, international level and demonstrates benefit for patients with selected key drivers. The use of cfDNA deserves validation in prospective studies. Our study highlights the need for innovative therapeutic proof-of-concept trials that address the underlying cancer complexity. This article is highlighted in the In This Issue feature, p. 1171.


Asunto(s)
Carcinoma , Ácidos Nucleicos Libres de Células , Adolescente , Biomarcadores de Tumor/genética , Niño , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Medicina de Precisión/métodos , Estudios Prospectivos
5.
Eur J Cancer ; 160: 12-23, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34794856

RESUMEN

BACKGROUND: Paediatric tumours are often characterised by the presence of recurrent DNA copy number alterations (CNAs). These DNA copy number profiles, obtained from a tissue biopsy, can aid in the correct prognostic classification and therapeutic stratification of several paediatric cancer entities (e.g. MYCN amplification in neuroblastoma) and are part of the routine diagnostic practice. Liquid biopsies (LQBs) offer a potentially safer alternative for such invasive tumour tissue biopsies and can provide deeper insight into tumour heterogeneity. PROCEDURE: The robustness and reliability of LQB CNA analyses was evaluated. We performed retrospective CNA profiling using shallow whole-genome sequencing (sWGS) on paired plasma circulating cell-free DNA (cfDNA) and tissue DNA samples from routinely collected samples from paediatric patients (n = 128) representing different tumour entities, including osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, Wilms tumour, brain tumours and neuroblastoma. RESULTS: Overall, we observed a good concordance between CNAs in tissue DNA and cfDNA. The main cause of CNA discordance was found to be low cfDNA sample quality (i.e. the ratio of cfDNA (<700 bp) and high molecular weight DNA (>700 bp)). Furthermore, CNAs were observed that were present in cfDNA and not in tissue DNA, or vice-versa. In neuroblastoma samples, no false-positives or false-negatives were identified for the detection of the prognostic marker MYCN amplification. CONCLUSION: In future prospective studies, CNA analysis on LQBs that are of sufficient quality can serve as a complementary assay for CNA analysis on tissue biopsies, as either cfDNA or tissue DNA can contain CNAs that cannot be identified in the other biomaterial.


Asunto(s)
Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Variaciones en el Número de Copia de ADN/genética , Biopsia Líquida/métodos , Adolescente , Niño , Preescolar , Estudios de Factibilidad , Femenino , Humanos , Masculino , Estudios Prospectivos , Estudios Retrospectivos
6.
Eur J Cancer ; 154: 277-287, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34298378

RESUMEN

PURPOSE: The analysis of circulating tumor DNA (ctDNA), a fraction of total cell-free DNA (cfDNA), might be of special interest in retinoblastoma patients. Because the accessibility to tumor tissue is very limited in these patients, either for histopathological diagnosis of suspicious intraocular masses (biopsies are proscribed) or for somatic RB1 studies and genetic counseling (due to current successful conservative approaches), we aim to validate the detection of ctDNA in plasma of non-hereditary retinoblastoma patients by molecular analysis of RB1 gene. EXPERIMENTAL DESIGN: In a cohort of 19 intraocular unilateral non-hereditary retinoblastoma patients for whom a plasma sample was available at diagnosis, we performed high-deep next-generation sequencing (NGS) of RB1 in cfDNA. Two different bioinformatics/statistics approaches were applied depending on whether the somatic RB1 status was available or not. RESULTS: Median plasma sample volume was 600 µL [100-1000]; median cfDNA plasma concentration was 119 [38-1980] and 27 [11-653] ng/mL at diagnosis and after complete remission, respectively. In the subgroup of patients with known somatic RB1 alterations (n = 11), seven of nine somatic mutations were detected (median allele fraction: 6.7%). In patients without identified somatic RB1 alterations (n = 8), six candidate variants were identified for seven patients. CONCLUSIONS: Despite small tumor size, blood-ocular barrier, poor ctDNA blood release and limited plasma sample volumes, we confirm that it is possible to detect ctDNA with high-deep NGS in plasma from patients with intraocular non-hereditary retinoblastoma. This may aid in diagnosis of suspicious cases, family genetic counseling or follow-up of residual intraocular disease.


Asunto(s)
ADN Tumoral Circulante/análisis , Retinoblastoma/diagnóstico , Niño , Preescolar , Biología Computacional , Femenino , Humanos , Lactante , Masculino , Mutación , Retinoblastoma/sangre , Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/genética , Estudios Retrospectivos , Ubiquitina-Proteína Ligasas/genética
7.
Nat Commun ; 12(1): 3230, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050156

RESUMEN

Sequencing of cell-free DNA in the blood of cancer patients (liquid biopsy) provides attractive opportunities for early diagnosis, assessment of treatment response, and minimally invasive disease monitoring. To unlock liquid biopsy analysis for pediatric tumors with few genetic aberrations, we introduce an integrated genetic/epigenetic analysis method and demonstrate its utility on 241 deep whole-genome sequencing profiles of 95 patients with Ewing sarcoma and 31 patients with other pediatric sarcomas. Our method achieves sensitive detection and classification of circulating tumor DNA in peripheral blood independent of any genetic alterations. Moreover, we benchmark different metrics for cell-free DNA fragmentation analysis, and we introduce the LIQUORICE algorithm for detecting circulating tumor DNA based on cancer-specific chromatin signatures. Finally, we combine several fragmentation-based metrics into an integrated machine learning classifier for liquid biopsy analysis that exploits widespread epigenetic deregulation and is tailored to cancers with low mutation rates. Clinical associations highlight the potential value of cfDNA fragmentation patterns as prognostic biomarkers in Ewing sarcoma. In summary, our study provides a comprehensive analysis of circulating tumor DNA beyond recurrent genetic aberrations, and it renders the benefits of liquid biopsy more readily accessible for childhood cancers.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias Óseas/diagnóstico , ADN Tumoral Circulante/sangre , Sarcoma de Ewing/diagnóstico , Adolescente , Adulto , Biomarcadores de Tumor/genética , Neoplasias Óseas/sangre , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Estudios de Casos y Controles , Niño , Preescolar , ADN Tumoral Circulante/genética , Análisis Mutacional de ADN , Femenino , Humanos , Lactante , Biopsia Líquida/métodos , Masculino , Persona de Mediana Edad , Mutación , Sarcoma de Ewing/sangre , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Secuenciación Completa del Genoma , Adulto Joven
8.
Epigenetics ; 16(2): 196-208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32662719

RESUMEN

In the clinical management of paediatric solid tumours, histological examination of tumour tissue obtained by a biopsy remains the gold standard to establish a conclusive pathological diagnosis. The DNA methylation pattern of a tumour is known to correlate with the histopathological diagnosis across cancer types and is showing promise in the diagnostic workup of tumour samples. This methylation pattern can be detected in the cell-free DNA. Here, we provide proof-of-concept of histopathologic classification of paediatric tumours using cell-free reduced representation bisulphite sequencing (cf-RRBS) from retrospectively collected plasma and cerebrospinal fluid samples. We determined the correct tumour type in 49 out of 60 (81.6%) samples starting from minute amounts (less than 10 ng) of cell-free DNA. We demonstrate that the majority of misclassifications were associated with sample quality and not with the extent of disease. Our approach has the potential to help tackle some of the remaining diagnostic challenges in paediatric oncology in a cost-effective and minimally invasive manner.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias , Niño , Metilación de ADN , Humanos , Estudios Retrospectivos , Análisis de Secuencia de ADN , Sulfitos
9.
Int J Cancer ; 145(10): 2781-2791, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31018240

RESUMEN

In neuroblastoma (NB), genetic alterations in chromatin remodeling (CRGs) and epigenetic modifier genes (EMGs) have been described. We sought to determine their frequency and clinical impact. Whole exome (WES)/whole genome sequencing (WGS) data and targeted sequencing (TSCA®) of exonic regions of 33 CRGs/EMGs were analyzed in tumor samples from 283 NB patients, with constitutional material available for 55 patients. The frequency of CRG/EMG variations in NB cases was then compared to the Genome Aggregation Database (gnomAD). The sequencing revealed SNVs/small InDels or focal CNAs of CRGs/EMGs in 20% (56/283) of all cases, occurring at a somatic level in 4 (7.2%), at a germline level in 12 (22%) cases, whereas for the remaining cases, only tumor material could be analyzed. The most frequently altered genes were ATRX (5%), SMARCA4 (2.5%), MLL3 (2.5%) and ARID1B (2.5%). Double events (SNVs/small InDels/CNAs associated with LOH) were observed in SMARCA4 (n = 3), ATRX (n = 1) and PBRM1 (n = 1). Among the 60 variations, 24 (8.4%) targeted domains of functional importance for chromatin remodeling or highly conserved domains but of unknown function. Variations in SMARCA4 and ATRX occurred more frequently in the NB as compared to the gnomAD control cohort (OR = 4.49, 95%CI: 1.63-9.97, p = 0.038; OR 3.44, 95%CI: 1.46-6.91, p = 0.043, respectively). Cases with CRG/EMG variations showed a poorer overall survival compared to cases without variations. Genetic variations of CRGs/EMGs with likely functional impact were observed in 8.4% (24/283) of NB. Our case-control approach suggests a role of SMARCA4 as a player of NB oncogenesis.


Asunto(s)
Carcinogénesis/genética , Ensamble y Desensamble de Cromatina/genética , ADN Helicasas/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Variaciones en el Número de Copia de ADN , Exones/genética , Femenino , Mutación de Línea Germinal , Humanos , Mutación INDEL , Lactante , Recién Nacido , Estimación de Kaplan-Meier , Masculino , Neuroblastoma/mortalidad , Neuroblastoma/patología , Polimorfismo de Nucleótido Simple , Supervivencia sin Progresión , Secuenciación del Exoma , Proteína Nuclear Ligada al Cromosoma X/genética
10.
Int J Cancer ; 144(1): 68-79, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29923174

RESUMEN

Circulating tumor DNA (ctDNA) is a powerful tool for the molecular characterization of cancer. The most frequent pediatric kidney tumors (KT) are Wilms' tumors (WT), but other diagnoses may occur. According to the SIOP strategy, in most countries pediatric KT have a presumptive diagnosis of WT if they are clinically and radiologically compatible. The histologic confirmation is established after post-chemotherapy nephrectomy. Thus, there is a risk for a small fraction of patients to receive neoadjuvant chemotherapy that is not adapted to the disease. The aim of this work is to perform molecular diagnosis of pediatric KT by tumor genetic characterization based on the analysis of ctDNA. We analyzed ctDNA extracted from plasma samples of 18 pediatric patients with KT by whole-exome sequencing and compared the results to their matched tumor and germline DNA. Copy number alterations (CNAs) and single nucleotide variations (SNVs) were analyzed. We were able to detect tumor cell specific genetic alterations-CNAs, SNVs or both-in ctDNA in all patients except in one (for whom the plasma sample was obtained long after nephrectomy). These results open the door to new applications for the study of ctDNA with regards to the molecular diagnosis of KT, with a possibility of its usefulness for adapting the treatment early after diagnosis, but also for disease monitoring and follow up.


Asunto(s)
Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Neoplasias Renales/genética , Tumor de Wilms/genética , Biomarcadores de Tumor/sangre , Niño , Preescolar , ADN Tumoral Circulante/sangre , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Lactante , Neoplasias Renales/diagnóstico , Neoplasias Renales/terapia , Masculino , Terapia Neoadyuvante , Nefrectomía , Estudios Retrospectivos , Sensibilidad y Especificidad , Secuenciación Completa del Genoma/métodos , Tumor de Wilms/diagnóstico , Tumor de Wilms/terapia
11.
Bioinformatics ; 34(11): 1808-1816, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29342233

RESUMEN

Motivation: In cancer, clonal evolution is assessed based on information coming from single nucleotide variants and copy number alterations. Nonetheless, existing methods often fail to accurately combine information from both sources to truthfully reconstruct clonal populations in a given tumor sample or in a set of tumor samples coming from the same patient. Moreover, previously published methods detect clones from a single set of variants. As a result, compromises have to be done between stringent variant filtering [reducing dispersion in variant allele frequency estimates (VAFs)] and using all biologically relevant variants. Results: We present a framework for defining cancer clones using most reliable variants of high depth of coverage and assigning functional mutations to the detected clones. The key element of our framework is QuantumClone, a method for variant clustering into clones based on VAFs, genotypes of corresponding regions and information about tumor purity. We validated QuantumClone and our framework on simulated data. We then applied our framework to whole genome sequencing data for 19 neuroblastoma trios each including constitutional, diagnosis and relapse samples. We confirmed an enrichment of damaging variants within such pathways as MAPK (mitogen-activated protein kinases), neuritogenesis, epithelial-mesenchymal transition, cell survival and DNA repair. Most pathways had more damaging variants in the expanding clones compared to shrinking ones, which can be explained by the increased total number of variants between these two populations. Functional mutational rate varied for ancestral clones and clones shrinking or expanding upon treatment, suggesting changes in clone selection mechanisms at different time points of tumor evolution. Availability and implementation: Source code and binaries of the QuantumClone R package are freely available for download at https://CRAN.R-project.org/package=QuantumClone. Contact: gudrun.schleiermacher@curie.fr or valentina.boeva@inserm.fr. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Evolución Clonal , Variaciones en el Número de Copia de ADN , Tipificación Molecular/métodos , Neoplasias/genética , Programas Informáticos , Secuenciación Completa del Genoma/métodos , Análisis por Conglomerados , Análisis Mutacional de ADN/métodos , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , Neoplasias/diagnóstico
12.
Clin Cancer Res ; 24(4): 939-949, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29191970

RESUMEN

Purpose: Neuroblastoma displays important clinical and genetic heterogeneity, with emergence of new mutations at tumor progression.Experimental Design: To study clonal evolution during treatment and follow-up, an innovative method based on circulating cell-free DNA (cfDNA) analysis by whole-exome sequencing (WES) paired with target sequencing was realized in sequential liquid biopsy samples of 19 neuroblastoma patients.Results: WES of the primary tumor and cfDNA at diagnosis showed overlap of single-nucleotide variants (SNV) and copy number alterations, with 41% and 93% of all detected alterations common to the primary neuroblastoma and cfDNA. CfDNA WES at a second time point indicated a mean of 22 new SNVs for patients with progressive disease. Relapse-specific alterations included genes of the MAPK pathway and targeted the protein kinase A signaling pathway. Deep coverage target sequencing of intermediate time points during treatment and follow-up identified distinct subclones. For 17 seemingly relapse-specific SNVs detected by cfDNA WES at relapse but not tumor or cfDNA WES at diagnosis, deep coverage target sequencing detected these alterations in minor subclones, with relapse-emerging SNVs targeting genes of neuritogenesis and cell cycle. Furthermore a persisting, resistant clone with concomitant disappearance of other clones was identified by a mutation in the ubiquitin protein ligase HERC2Conclusions: Modelization of mutated allele fractions in cfDNA indicated distinct patterns of clonal evolution, with either a minor, treatment-resistant clone expanding to a major clone at relapse, or minor clones collaborating toward tumor progression. Identification of treatment-resistant clones will enable development of more efficient treatment strategies. Clin Cancer Res; 24(4); 939-49. ©2017 AACR.


Asunto(s)
Ácidos Nucleicos Libres de Células/genética , ADN de Neoplasias/genética , Secuenciación del Exoma/métodos , Variación Genética , Neuroblastoma/genética , Ácidos Nucleicos Libres de Células/química , Evolución Clonal , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/química , Femenino , Heterogeneidad Genética , Humanos , Masculino , Mutación , Recurrencia Local de Neoplasia , Neuroblastoma/patología , Neuroblastoma/terapia , Polimorfismo de Nucleótido Simple , Factores de Tiempo
13.
Clin Cancer Res ; 22(22): 5564-5573, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27440268

RESUMEN

PURPOSE: The tumor genomic copy number profile is of prognostic significance in neuroblastoma patients. We have studied the genomic copy number profile of cell-free DNA (cfDNA) and compared this with primary tumor arrayCGH (aCGH) at diagnosis. EXPERIMENTAL DESIGN: In 70 patients, cfDNA genomic copy number profiling was performed using the OncoScan platform. The profiles were classified according to the overall pattern, including numerical chromosome alterations (NCA), segmental chromosome alterations (SCA), and MYCN amplification (MNA). RESULTS: Interpretable and dynamic cfDNA profiles were obtained in 66 of 70 and 52 of 70 cases, respectively. An overall identical genomic profile between tumor aCGH and cfDNA was observed in 47 cases (3 NCAs, 22 SCAs, 22 MNAs). In one case, cfDNA showed an additional SCA not detected by tumor aCGH. In 4 of 8 cases with a silent tumor aCGH profile, cfDNA analysis revealed a dynamic profile (3 SCAs, 1 NCA). In 14 cases, cfDNA analysis did not reveal any copy number changes. A total of 378 breakpoints common to the primary tumor and cfDNA of any given patient were identified, 27 breakpoints were seen by tumor aCGH, and 54 breakpoints were seen in cfDNA only, including two cases with interstitial IGFR1 gains and two alterations targeting TERT CONCLUSIONS: These results demonstrate the feasibility of cfDNA copy number profiling in neuroblastoma patients, with a concordance of the overall genomic profile in aCGH and cfDNA dynamic cases of 97% and a sensitivity of 77%, respectively. Furthermore, neuroblastoma heterogeneity is highlighted, suggesting that cfDNA might reflect genetic alterations of more aggressive cell clones. Clin Cancer Res; 22(22); 5564-73. ©2016 AACRSee related commentary by Janku and Kurzrock, p. 5400.


Asunto(s)
ADN Tumoral Circulante/genética , Dosificación de Gen/genética , Neuroblastoma/sangre , Neuroblastoma/genética , Adolescente , Niño , Preescolar , Aberraciones Cromosómicas , Hibridación Genómica Comparativa/métodos , Femenino , Amplificación de Genes/genética , Genómica/métodos , Humanos , Lactante , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Pronóstico , Estudios Prospectivos
14.
Nat Genet ; 47(8): 864-71, 2015 08.
Artículo en Inglés | MEDLINE | ID: mdl-26121087

RESUMEN

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.


Asunto(s)
Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Recurrencia Local de Neoplasia/genética , Neuroblastoma/genética , Proteínas ras/genética , Quinasa de Linfoma Anaplásico , Animales , Bencimidazoles/farmacología , Western Blotting , Línea Celular Tumoral , Niño , Preescolar , Aberraciones Cromosómicas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Lactante , Masculino , Ratones SCID , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Fosforilación/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA