Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS One ; 19(10): e0309612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39413058

RESUMEN

BACKGROUND: Several studies indicate that people who stutter show greater variability in speech movements than people who do not stutter, even when the speech produced is perceptibly fluent. Speaking to the beat of a metronome reliably increases fluency in people who stutter, regardless of the severity of stuttering. OBJECTIVES: Here, we aimed to test whether metronome-timed speech reduces articulatory variability. METHOD: We analysed vocal tract MRI data from 24 people who stutter and 16 controls. Participants repeated sentences with and without a metronome. Midsagittal images of the vocal tract from lips to larynx were reconstructed at 33.3 frames per second. Any utterances containing dysfluencies or non-speech movements (e.g. swallowing) were excluded. For each participant, we measured the variability of movements (coefficient of variation) from the alveolar, palatal and velar regions of the vocal tract. RESULTS: People who stutter had more variability than control speakers when speaking without a metronome, which was then reduced to the same level as controls when speaking with the metronome. The velar region contained more variability than the alveolar and palatal regions, which were similar. CONCLUSIONS: These results demonstrate that kinematic variability during perceptibly fluent speech is increased in people who stutter compared with controls when repeating naturalistic sentences without any alteration or disruption to the speech. This extends our previous findings of greater variability in the movements of people who stutter when producing perceptibly fluent nonwords compared with controls. These results also show, that in addition to increasing fluency in people who stutter, metronome-timed speech also reduces articulatory variability to the same level as that seen in control speakers.


Asunto(s)
Imagen por Resonancia Magnética , Habla , Tartamudeo , Humanos , Tartamudeo/fisiopatología , Masculino , Adulto , Femenino , Habla/fisiología , Fenómenos Biomecánicos , Adulto Joven , Persona de Mediana Edad , Estudios de Casos y Controles
2.
IEEE Trans Med Imaging ; PP2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240738

RESUMEN

3D multi-slab acquisitions are an appealing approach for diffusion MRI because they are compatible with the imaging regime delivering optimal SNR efficiency. In conventional 3D multi-slab imaging, shot-to-shot phase variations caused by motion pose challenges due to the use of multi-shot k-space acquisition. Navigator acquisition after each imaging echo is typically employed to correct phase variations, which prolongs scan time and increases the specific absorption rate (SAR). The aim of this study is to develop a highly efficient, self-navigated method to correct for phase variations in 3D multi-slab diffusion MRI without explicitly acquiring navigators. The sampling of each shot is carefully designed to intersect with the central kz=0 plane of each slab, and the multi-shot sampling is optimized for self-navigation performance while retaining decent reconstruction quality. The kz=0 intersections from all shots are jointly used to reconstruct a 2D phase map for each shot using a structured low-rank constrained reconstruction that leverages the redundancy in shot and coil dimensions. The phase maps are used to eliminate the shot-to-shot phase inconsistency in the final 3D multi-shot reconstruction. We demonstrate the method's efficacy using retrospective simulations and prospectively acquired in-vivo experiments at 1.22 mm and 1.09 mm isotropic resolutions. Compared to conventional navigated 3D multi-slab imaging, the proposed self-navigated method achieves comparable image quality while shortening the scan time by 31.7% and improving the SNR efficiency by 15.5%. The proposed method produces comparable quality of DTI and white matter tractography to conventional navigated 3D multi-slab acquisition with a much shorter scan time.

3.
Skeletal Radiol ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153083

RESUMEN

OBJECTIVE: In this work, we evaluate the sodium magnetic resonance imaging (MRI) capabilities of a three-dimensional (3D) dual-echo ultrashort echo time (UTE) sequence with a novel rosette petal trajectory (PETALUTE), in comparison to the 3D density-adapted (DA) radial spokes UTE sequence in human articular cartilage in the knee. MATERIALS AND METHODS: We scanned five healthy subjects using a 3D dual-echo PETALUTE acquisition and two comparable implementations of 3D DA-radial spokes acquisitions, one matching the number of k-space projections (Radial - Matched Spokes) and the other matching the total number of samples (Radial - Matched Samples) acquired in k-space. RESULTS: The PETALUTE acquisition enabled equivalent sodium quantification in articular cartilage volumes of interest (168.8 ± 29.9 mM, mean ± standard deviation) to those derived from the 3D radial acquisitions (171.62 ± 28.7 mM and 149.8 ± 22.2 mM, respectively). We achieved a 41% shorter scan time of 2:06 for 3D PETALUTE, compared to 3:36 for 3D radial acquisitions. We also evaluated the feasibility of further acceleration of the PETALUTE sequence through retrospective compressed sensing with 2 × and 4 × acceleration of the first echo and showed structural similarity of 0.89 ± 0.03 and 0.87 ± 0.03 when compared to non-retrospectively accelerated reconstruction. CONCLUSION: We demonstrate improved scan time with equivalent performance using a 3D dual-echo PETALUTE sequence compared to the 3D DA-radial sequence for sodium MRI of articular cartilage.

4.
Front Neuroimaging ; 3: 1336887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984197

RESUMEN

Introduction: Use of functional MRI in awake non-human primate (NHPs) has recently increased. Scanning animals while awake makes data collection possible in the absence of anesthetic modulation and with an extended range of possible experimental designs. Robust awake NHP imaging however is challenging due to the strong artifacts caused by time-varying off-resonance changes introduced by the animal's body motion. In this study, we sought to thoroughly investigate the effect of a newly proposed dynamic off-resonance correction method on brain activation estimates using extended awake NHP data. Methods: We correct for dynamic B0 changes in reconstruction of highly accelerated simultaneous multi-slice EPI acquisitions by estimating and correcting for dynamic field perturbations. Functional MRI data were collected in four male rhesus monkeys performing a decision-making task in the scanner, and analyses of improvements in sensitivity and reliability were performed compared to conventional image reconstruction. Results: Applying the correction resulted in reduced bias and improved temporal stability in the reconstructed time-series data. We found increased sensitivity to functional activation at the individual and group levels, as well as improved reliability of statistical parameter estimates. Conclusions: Our results show significant improvements in image fidelity using our proposed correction strategy, as well as greatly enhanced and more reliable activation estimates in GLM analyses.

5.
Magn Reson Med ; 92(5): 2007-2020, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38934380

RESUMEN

PURPOSE: To acquire accurate volumetric multi-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps in under 14 s whole-brain or 23 heartbeats whole-heart for parallel transmit (pTx) applications at 7 T. THEORY AND METHODS: We evaluate the combination of three recently proposed techniques. The acquisition of multi-channel transmit array B 1 + $$ {\mathrm{B}}_1^{+} $$ maps is accelerated using transmit low rank (TxLR) with absolute B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping (Sandwich) acquired in a B 1 + $$ {\mathrm{B}}_1^{+} $$ time-interleaved acquisition of modes (B1TIAMO) fashion. Simulations using synthetic body images derived from Sim4Life were used to test the achievable acceleration for small scan matrices of 24 × 24. Next, we evaluated the method by retrospectively undersampling a fully sampled B 1 + $$ {\mathrm{B}}_1^{+} $$ library of nine subjects in the brain. Finally, Cartesian undersampled phantom and in vivo images were acquired in both the brain of three subjects (8Tx/32 receive [Rx]) and the heart of another three subjects (8Tx/8Rx) at 7 T. RESULTS: Simulation and in vivo results show that volumetric multi-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be acquired using acceleration factors of 4 in the body, reducing the acquisition time to within 23 heartbeats, which was previously not possible. In silico heart simulations demonstrated a RMS error to the fully sampled native resolution ground truth of 4.2° when combined in first-order circularly polarized mode (mean flip angle 66°) at an acceleration factor of 4. The 14 s 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ maps acquired in the brain have a RMS error of 1.9° to the fully sampled (mean flip angle 86°). CONCLUSION: The proposed method is demonstrated as a fast pTx calibration technique in the brain and a promising method for pTx calibration in the body.


Asunto(s)
Algoritmos , Encéfalo , Corazón , Imagenología Tridimensional , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Encéfalo/diagnóstico por imagen , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Simulación por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Masculino , Reproducibilidad de los Resultados
6.
Magn Reson Med ; 92(4): 1568-1583, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38767321

RESUMEN

PURPOSE: To improve the spatial resolution and repeatability of a non-contrast MRI technique for simultaneous time resolved 3D angiography and perfusion imaging by developing an efficient 3D cone trajectory design. METHODS: A novel parameterized 3D cone trajectory design incorporating the 3D golden angle was integrated into 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) to achieve higher spatial resolution and sampling efficiency for both dynamic angiography and perfusion imaging with flexible spatiotemporal resolution. Numerical simulations and physical phantom scanning were used to optimize the cone design. Eight healthy volunteers were scanned to compare the original radial trajectory in 4D CAPRIA with our newly designed cone trajectory. A locally low rank reconstruction method was used to leverage the complementary k-space sampling across time. RESULTS: The improved sampling in the periphery of k-space obtained with the optimized 3D cone trajectory resulted in improved spatial resolution compared with the radial trajectory in phantom scans. Improved vessel sharpness and perfusion visualization were also achieved in vivo. Less dephasing was observed in the angiograms because of the short TE of our cone trajectory and the improved k-space sampling efficiency also resulted in higher repeatability compared to the original radial approach. CONCLUSION: The proposed 3D cone trajectory combined with 3D golden angle ordering resulted in improved spatial resolution and image quality for both angiography and perfusion imaging and could potentially benefit other applications that require an efficient sampling scheme with flexible spatial and temporal resolution.


Asunto(s)
Imagenología Tridimensional , Angiografía por Resonancia Magnética , Fantasmas de Imagen , Marcadores de Spin , Humanos , Imagenología Tridimensional/métodos , Angiografía por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Adulto , Masculino , Algoritmos , Femenino , Imagen de Perfusión/métodos , Voluntarios Sanos , Procesamiento de Imagen Asistido por Computador/métodos , Simulación por Computador
7.
medRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38746343

RESUMEN

In this work, we demonstrate the sodium magnetic resonance imaging (MRI) capabilities of a three-dimensional (3D) dual-echo ultrashort echo time (UTE) sequence with a novel rosette petal trajectory (PETALUTE), in comparison to the 3D density-adapted (DA) radial spokes UTE sequence. We scanned five healthy subjects using a 3D dual-echo PETALUTE acquisition and two comparable implementations of 3D DA-radial spokes acquisitions, one matching the number of k-space projections (Radial-Matched Trajectories) and the other matching the total number of samples (Radial-Matched Samples) acquired in k-space. The PETALUTE acquisition enabled equivalent sodium quantification in articular cartilage volumes of interest (168.8 ± 29.9 mM) to those derived from the 3D radial acquisitions (171.62 ± 28.7 mM and 149.8 ± 22.2 mM, respectively). We achieved a shorter scan time of 2:06 for 3D PETALUTE, compared to 3:36 for 3D radial acquisitions. We also evaluated the feasibility of further acceleration of the PETALUTE sequence through retrospective compressed sensing with 2× and 4× acceleration of the first echo and showed structural similarity of 0.89 ± 0.03 and 0.87 ± 0.03 when compared to non-retrospectively accelerated reconstruction. Together, these results demonstrate improved scan time with equivalent performance of the PETALUTE sequence compared to the 3D DA-radial sequence for sodium MRI of articular cartilage.

8.
Tomography ; 10(4): 493-503, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38668396

RESUMEN

Quantifying an imaging modality's ability to reproduce results is important for establishing its utility. In magnetic resonance spectroscopic imaging (MRSI), new acquisition protocols are regularly introduced which improve upon their precursors with respect to signal-to-noise ratio (SNR), total acquisition duration, and nominal voxel resolution. This study has quantified the within-subject and between-subject reproducibility of one such new protocol (reduced-field-of-view density-weighted concentric ring trajectory (rFOV-DW-CRT) MRSI) by calculating the coefficient of variance of data acquired from a test-retest experiment. The posterior cingulate cortex (PCC) and the right superior corona radiata (SCR) were selected as the regions of interest (ROIs) for grey matter (GM) and white matter (WM), respectively. CVs for between-subject and within-subject were consistently around or below 15% for Glx, tCho, and Myo-Ins, and below 5% for tNAA and tCr.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados , Masculino , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Relación Señal-Ruido , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
9.
Res Sq ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38659806

RESUMEN

Phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI) provides valuable non-invasive in vivo information on tissue metabolism but is burdened by poor sensitivity and prolonged scan duration. Ultra-short echo time (UTE) acquisitions minimize signal loss when probing signals with relatively short spin-spin relaxation time (T2), while also preventing first-order dephasing. Here, a three-dimensional (3D) UTE sequence with a rosette k-space trajectory is applied to 31P-MRSI at 3T. Conventional chemical shift imaging (CSI) employs highly regular Cartesian k-space sampling, susceptible to substantial artifacts when accelerated via undersampling. In contrast, this novel sequence's "petal-like" pattern offers incoherent sampling more suitable for compressed sensing (CS). These results showcase the competitive performance of UTE rosette 31P-MRSI against conventional weighted CSI with simulation, phantom, and in vivo leg muscle comparisons.

10.
Magn Reson Med ; 91(6): 2443-2458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38361309

RESUMEN

PURPOSE: The 3D multi-shot EPI imaging offers several benefits including higher SNR and high isotropic resolution compared to 2D single shot EPI. However, it suffers from shot-to-shot inconsistencies arising from physiologically induced phase variations and bulk motion. This work proposed a motion compensated structured low-rank (mcSLR) reconstruction method to address both issues for 3D multi-shot EPI. METHODS: Structured low-rank reconstruction has been successfully used in previous work to deal with inter-shot phase variations for 3D multi-shot EPI imaging. It circumvents the estimation of phase variations by reconstructing an individual image for each phase state which are then sum-of-squares combined, exploiting their linear interdependency encoded in structured low-rank constraints. However, structured low-rank constraints become less effective in the presence of inter-shot motion, which corrupts image magnitude consistency and invalidates the linear relationship between shots. Thus, this work jointly models inter-shot phase variations and motion corruptions by incorporating rigid motion compensation for structured low-rank reconstruction, where motion estimates are obtained in a fully data-driven way without relying on external hardware or imaging navigators. RESULTS: Simulation and in vivo experiments at 7T have demonstrated that the mcSLR method can effectively reduce image artifacts and improve the robustness of 3D multi-shot EPI, outperforming existing methods which only address inter-shot phase variations or motion, but not both. CONCLUSION: The proposed mcSLR reconstruction compensates for rigid motion, and thus improves the validity of structured low-rank constraints, resulting in improved robustness of 3D multi-shot EPI to both inter-shot motion and phase variations.


Asunto(s)
Algoritmos , Encéfalo , Imagenología Tridimensional/métodos , Movimiento (Física) , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Imagen de Difusión por Resonancia Magnética/métodos
11.
IEEE Trans Comput Imaging ; 9: 707-720, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37600280

RESUMEN

In recent years, there has been attention on leveraging the statistical modeling capabilities of neural networks for reconstructing sub-sampled Magnetic Resonance Imaging (MRI) data. Most proposed methods assume the existence of a representative fully-sampled dataset and use fully-supervised training. However, for many applications, fully sampled training data is not available, and may be highly impractical to acquire. The development and understanding of self-supervised methods, which use only sub-sampled data for training, are therefore highly desirable. This work extends the Noisier2Noise framework, which was originally constructed for self-supervised denoising tasks, to variable density sub-sampled MRI data. We use the Noisier2Noise framework to analytically explain the performance of Self-Supervised Learning via Data Undersampling (SSDU), a recently proposed method that performs well in practice but until now lacked theoretical justification. Further, we propose two modifications of SSDU that arise as a consequence of the theoretical developments. Firstly, we propose partitioning the sampling set so that the subsets have the same type of distribution as the original sampling mask. Secondly, we propose a loss weighting that compensates for the sampling and partitioning densities. On the fastMRI dataset we show that these changes significantly improve SSDU's image restoration quality and robustness to the partitioning parameters.

12.
J Trace Elem Med Biol ; 77: 127146, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36871432

RESUMEN

BACKGROUND: The iron concentration increases during normal brain development and is identified as a risk factor for many neurodegenerative diseases, it is vital to monitor iron content in the brain non-invasively. PURPOSE: This study aimed to quantify in vivo brain iron concentration with a 3D rosette-based ultra-short echo time (UTE) magnetic resonance imaging (MRI) sequence. METHODS: A cylindrical phantom containing nine vials of different iron concentrations (iron (II) chloride) from 0.5 millimoles to 50 millimoles and six healthy subjects were scanned using 3D high-resolution (0.94 ×0.94 ×0.94 mm3) rosette UTE sequence at an echo time (TE) of 20 µs. RESULTS: Iron-related hyperintense signals (i.e., positive contrast) were detected based on the phantom scan, and were used to establish an association between iron concentration and signal intensity. The signal intensities from in vivo scans were then converted to iron concentrations based on the association. The deep brain structures, such as the substantia nigra, putamen, and globus pallidus, were highlighted after the conversion, which indicated potential iron accumulations. CONCLUSION: This study suggested that T1-weighted signal intensity could be used for brain iron mapping.


Asunto(s)
Hierro , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Medios de Contraste
13.
Neuroimage ; 267: 119827, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36572131

RESUMEN

Three-dimensional (3D) encoding methods are increasingly being explored as alternatives to two-dimensional (2D) multi-slice acquisitions in fMRI, particularly in cases where high isotropic resolution is needed. 3D multi-shot EPI acquisition, as the workhorse of 3D fMRI imaging, is susceptible to physiological fluctuations which can induce inter-shot phase variations, and thus reducing the achievable tSNR, negating some of the benefit of 3D encoding. This issue can be particularly problematic at ultra-high fields like 7T, which have more severe off-resonance effects. In this work, we aim to improve the temporal stability of 3D multi-shot EPI at 7T by improving its robustness to inter-shot phase variations. We presented a 3D segmented CAIPI sampling trajectory ("seg-CAIPI") and an improved reconstruction method based on Hankel structured low-rank matrix recovery. Simulation and in-vivo results demonstrate that the combination of the seg-CAIPI sampling scheme and the proposed structured low-rank reconstruction is a promising way to effectively reduce the unwanted temporal variance induced by inter-shot physiological fluctuations, and thus improve the robustness of 3D multi-shot EPI for fMRI.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Eco-Planar/métodos , Encéfalo/diagnóstico por imagen , Algoritmos
14.
Magn Reson Med ; 89(5): 1853-1870, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36533868

RESUMEN

PURPOSE: To extend and optimize a non-contrast MRI technique to obtain whole head 4D (time-resolved 3D) qualitative angiographic and perfusion images from a single scan. METHODS: 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) uses pseudocontinuous labeling with a 3D golden ratio ("koosh ball") readout to continuously image the blood water as it travels through the arterial system and exchanges into the tissue. High spatial/temporal resolution angiograms and low spatial/temporal resolution perfusion images can be flexibly reconstructed from the same raw k-space data. Constant and variable flip angle (CFA and VFA, respectively) excitation schedules were optimized through simulations and tested in healthy volunteers. A conventional sensitivity encoding (SENSE) reconstruction was compared against a locally low rank (LLR) reconstruction, which leverages spatiotemporal correlations. Comparison was also made with time-matched time-of-flight angiography and multi-delay EPI perfusion images. Differences in image quality were assessed through split-scan repeatability. RESULTS: The optimized VFA schedule (2-9°) resulted in a significant (p < 0.001) improvement in image quality (up to 84% vs. CFA), particularly for the lower SNR perfusion images. The LLR reconstruction provided effective denoising without biasing the signal timecourses, significantly improving angiographic and perfusion image quality and repeatability (up to 143%, p < 0.001). 4D CAPRIA performed well compared with time-of-flight angiography and had better perfusion signal repeatability than the EPI-based approach (p < 0.001). CONCLUSION: 4D CAPRIA optimized using a VFA schedule and LLR reconstruction can yield high quality whole head 4D angiograms and perfusion images from a single scan.


Asunto(s)
Imagenología Tridimensional , Angiografía por Resonancia Magnética , Humanos , Angiografía por Resonancia Magnética/métodos , Marcadores de Spin , Imagenología Tridimensional/métodos , Angiografía Cerebral/métodos , Perfusión
15.
Magn Reson Med ; 89(2): 508-521, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36161728

RESUMEN

PURPOSE: This study aimed to develop a new 3D dual-echo rosette k-space trajectory, specifically designed for UTE MRI applications. The imaging of the ultra-short transverse relaxation time (uT2 ) of brain was acquired to test the performance of the proposed UTE sequence. THEORY AND METHODS: The rosette trajectory was developed based on rotations of a "petal-like" pattern in the kx -ky plane, with oscillated extensions in the kz -direction for 3D coverage. Five healthy volunteers underwent 10 dual-echo 3D rosette UTE scans with various TEs. Dual-exponential complex model fitting was performed on the magnitude data to separate uT2 signals, with the output of uT2 fraction, uT2 value, and long-T2 value. RESULTS: The 3D rosette dual-echo UTE sequence showed better performance than a 3D radial UTE acquisition. More significant signal intensity decay in white matter than gray matter was observed along with the TEs. The white matter regions had higher uT2 fraction values than gray matter (10.9% ± 1.9% vs. 5.7% ± 2.4%). The uT2 value was approximately 0.10 ms in white matter . CONCLUSION: The higher uT2 fraction value in white matter compared to gray matter demonstrated the ability of the proposed sequence to capture rapidly decaying signals.


Asunto(s)
Imagen por Resonancia Magnética , Sustancia Blanca , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Voluntarios Sanos , Imagenología Tridimensional
16.
Magn Reson Med ; 89(4): 1323-1341, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36255158

RESUMEN

PURPOSE: Dynamic angiography using arterial spin labeling (ASL) can provide detailed hemodynamic information. However, the long time-resolved readouts require small flip angles to preserve ASL signal for later timepoints, limiting SNR. By using time-encoded ASL to generate temporal information, the readout can be shortened. Here, the SNR improvements from using larger flip angles, made possible by the shorter readout, are quantitatively investigated. METHODS: The SNR of a conventional protocol with nine Look-Locker readouts and a 4 × $$ \times $$ 3 time-encoded protocol with three Look-Locker readouts (giving nine matched timepoints) were compared using simulations and in vivo data. Both protocols were compared using readouts with constant flip angles (CFAs) and variable flip angles (VFAs), where the VFA scheme was designed to produce a consistent ASL signal across readouts. Optimization of the background suppression to minimize physiological noise across readouts was also explored. RESULTS: The time-encoded protocol increased in vivo SNR by 103% and 96% when using CFAs or VFAs, respectively. Use of VFAs improved SNR compared with CFAs by 25% and 21% for the conventional and time-encoded protocols, respectively. The VFA scheme also removed signal discontinuities in the time-encoded data. Preliminary data suggest that optimizing the background suppression could improve in vivo SNR by a further 16%. CONCLUSIONS: Time encoding can be used to generate additional temporal information in ASL angiography. This enables the use of larger flip angles, which can double the SNR compared with a non-time-encoded protocol. The shortened time-encoded readout can also lead to improved background suppression, reducing physiological noise and further improving SNR.


Asunto(s)
Imagenología Tridimensional , Angiografía por Resonancia Magnética , Angiografía por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Encéfalo , Marcadores de Spin , Circulación Cerebrovascular/fisiología , Algoritmos
17.
Magn Reson Med ; 88(5): 2058-2073, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35785429

RESUMEN

PURPOSE: We investigate the use of TURBINE, a 3D radial-Cartesian acquisition scheme in which EPI planes are rotated about the phase-encoding axis to acquire a cylindrical k-space for high-fidelity ultrahigh isotropic resolution fMRI at 7 Tesla with minimal distortion and blurring. METHODS: An improved, completely self-navigated version of the TURBINE sampling scheme was designed for fMRI at 7 Telsa. To demonstrate the image quality and spatial specificity of the acquisition, thin-slab visual and motor BOLD fMRI at 0.67 mm isotropic resolution (16 mm slab, TRvol = 2.32 s), and 0.8 × 0.8 × 2.0 mm (whole-brain, TRvol = 2.4 s) data were acquired. To prioritize the high spatial fidelity, we employed a temporally regularized reconstruction to improve sensitivity without any spatial bias. RESULTS: TURBINE images provide high structural fidelity with almost no distortion, dropout, or T2 * blurring for the thin-slab acquisitions compared to conventional 3D EPI owing to the radial sampling in-plane and the short echo train used. This results in activation that can be localized to pre- and postcentral gyri in a motor task, for example, with excellent correspondence to brain structure measured by a T1 -MPRAGE. The benefits of TURBINE (low distortion, dropout, blurring) are reduced for the whole-brain acquisition due to the longer EPI train. We demonstrate robust BOLD activation at 0.67 mm isotropic resolution (thin-slab) and also anisotropic 0.8 × 0.8 × 2.0 mm (whole-brain) acquisitions. CONCLUSION: TURBINE is a promising acquisition approach for high-resolution, minimally distorted fMRI at 7 Tesla and could be particularly useful for fMRI in areas of high B0 inhomogeneity.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Anisotropía , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
18.
J Commun Disord ; 97: 106213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35397388

RESUMEN

INTRODUCTION: Most of the previous articulatory studies of stuttering have focussed on the fluent speech of people who stutter. However, to better understand what causes the actual moments of stuttering, it is necessary to probe articulatory behaviors during stuttered speech. We examined the supralaryngeal articulatory characteristics of stuttered speech using real-time structural magnetic resonance imaging (RT-MRI). We investigated how articulatory gestures differ across stuttered and fluent speech of the same speaker. METHODS: Vocal tract movements of an adult man who stutters during a pseudoword reading task were recorded using RT-MRI. Four regions of interest (ROIs) were defined on RT-MRI image sequences around the lips, tongue tip, tongue body, and velum. The variation of pixel intensity in each ROI over time provided an estimate of the movement of these four articulators. RESULTS: All disfluencies occurred on syllable-initial consonants. Three articulatory patterns were identified. Pattern 1 showed smooth gestural formation and release like fluent speech. Patterns 2 and 3 showed delayed release of gestures due to articulator fixation or oscillation respectively. Block and prolongation corresponded to either pattern 1 or 2. Repetition corresponded to pattern 3 or a mix of patterns. Gestures for disfluent consonants typically exhibited a greater constriction than fluent gestures, which was rarely corrected during disfluencies. Gestures for the upcoming vowel were initiated and executed during these consonant disfluencies, achieving a tongue body position similar to the fluent counterpart. CONCLUSION: Different perceptual types of disfluencies did not necessarily result from distinct articulatory patterns, highlighting the importance of collecting articulatory data of stuttering. Disfluencies on syllable-initial consonants were related to the delayed release and the overshoot of consonant gestures, rather than the delayed initiation of vowel gestures. This suggests that stuttering does not arise from problems with planning the vowel gestures, but rather with releasing the overly constricted consonant gestures.


Asunto(s)
Tartamudeo , Adulto , Gestos , Humanos , Imagen por Resonancia Magnética , Masculino , Habla , Medición de la Producción del Habla
19.
Magn Reson Med ; 87(6): 2922-2932, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35081259

RESUMEN

PURPOSE: To estimate dynamic off-resonance due to vigorous body motion in accelerated fMRI of awake behaving nonhuman primates (NHPs) using the echo-planar imaging reference navigator, in order to attenuate the effects of time-varying off-resonance on the reconstruction. METHODS: In NHP fMRI, the animal's head is usually head-posted, and the dynamic off-resonance is mainly caused by motion in body parts that are distant from the brain and have low spatial frequency. Hence, off-resonance at each frame can be approximated as a spatially linear perturbation of the off-resonance at a reference frame, and is manifested as a relative linear shift in k-space. Using GRAPPA operators, we estimated these shifts by comparing the navigator at each time frame with that at the reference frame. Estimated shifts were then used to correct the data at each frame. The proposed method was evaluated in phantom scans, simulations, and in vivo data. RESULTS: The proposed method is shown to successfully estimate spatially low-order dynamic off-resonance perturbations, including induced linear off-resonance perturbations in phantoms, and is able to correct retrospectively corrupted data in simulations. Finally, it is shown to reduce ghosting artifacts and geometric distortions by up to 20% in simultaneous multislice in vivo acquisitions in awake-behaving NHPs. CONCLUSION: A method is proposed that does not need sequence modification or extra acquisitions and makes accelerated awake behaving NHP imaging more robust and reliable, reducing the gap between what is possible with NHP protocols and state-of-the-art human imaging.


Asunto(s)
Imagen por Resonancia Magnética , Vigilia , Algoritmos , Animales , Artefactos , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Primates , Estudios Retrospectivos
20.
Magn Reson Med ; 87(2): 574-588, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34545962

RESUMEN

PURPOSE: Low-rank denoising of MRSI data results in an apparent increase in spectral SNR. However, it is not clear if this translates to a lower uncertainty in metabolite concentrations after spectroscopic fitting. Estimation of the true uncertainty after denoising is desirable for downstream analysis in spectroscopy. In this work, the uncertainty reduction from low-rank denoising methods based on spatiotemporal separability and linear predictability in MRSI are assessed. A new method for estimating metabolite concentration uncertainty after denoising is proposed. Automatic rank threshold selection methods are also assessed in simulated low SNR regimes. METHODS: Assessment of denoising methods is conducted using Monte Carlo simulation of proton MRSI data and by reproducibility of repeated in vivo acquisitions in 5 subjects. RESULTS: In simulated and in vivo data, spatiotemporal based denoising is shown to reduce the concentration uncertainty, but linear prediction denoising increases uncertainty. Uncertainty estimates provided by fitting algorithms after denoising consistently underestimate actual metabolite uncertainty. However, the proposed uncertainty estimation, based on an analytical expression for entry-wise variance after denoising, is more accurate. It is also shown automated rank threshold selection using Marchenko-Pastur distribution can bias the data in low SNR conditions. An alternative soft-thresholding function is proposed. CONCLUSION: Low-rank denoising methods based on spatiotemporal separability do reduce uncertainty in MRS(I) data. However, thorough assessment is needed as assessment by SNR measured from residual baseline noise is insufficient given the presence of non-uniform variance. It is also important to select the right rank thresholding method in low SNR cases.


Asunto(s)
Algoritmos , Encéfalo , Encéfalo/diagnóstico por imagen , Humanos , Reproducibilidad de los Resultados , Relación Señal-Ruido , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...