Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 130(22): 3839-3850, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29021346

RESUMEN

Our previous studies have shown that the HECT E3 ubiquitin ligase NEDD4 interacts with LC3 and is required for starvation and rapamycin-induced activation of autophagy. Here, we report that NEDD4 directly binds to SQSTM1 via its HECT domain and polyubiquitylates SQSTM1. This ubiquitylation is through K63 conjugation and is not involved in proteasomal degradation. Mutational analysis indicates that NEDD4 interacts with and ubiquitylates the PB1 domain of SQSTM1. Depletion of NEDD4 or overexpression of the ligase-defective mutant of NEDD4 induced accumulation of aberrant enlarged SQSTM1-positive inclusion bodies that are co-localized with the endoplasmic reticulum (ER) marker CANX, suggesting that the ubiquitylation functions in the SQSTM1-mediated biogenic process in inclusion body autophagosomes. Taken together, our studies show that NEDD4 is an autophagic E3 ubiquitin ligase that ubiquitylates SQSTM1, facilitating SQSTM1-mediated inclusion body autophagy.


Asunto(s)
Autofagia , Ubiquitina-Proteína Ligasas Nedd4/fisiología , Proteína Sequestosoma-1/metabolismo , Ubiquitinación , Células A549 , Células HEK293 , Humanos , Cuerpos de Inclusión/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteínas/metabolismo , Proteolisis
2.
Autophagy ; 13(3): 522-537, 2017 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-28085563

RESUMEN

The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Células A549 , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Biomarcadores/metabolismo , Secuencia Conservada , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Membranas Intracelulares/metabolismo , Unión Proteica , Dominios Proteicos , Proteína Sequestosoma-1/metabolismo , Especificidad por Sustrato , Ubiquitinación
3.
Cancer Cell Int ; 15: 27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25745361

RESUMEN

PDZ binding-kinase (PBK) (also named T-lymphokine-activated killer cell-originated protein kinase (TOPK)), a serine/threonine kinase, is tightly controlled in normal tissues but elevated in many tumors, and functions in tumorigenesis and metastasis. However, the signaling that regulates expression of PBK in cancer cells remains elusive. Here we show that atorvastatin (Lipitor), an inhibitor of hydroxymethylglutaryl co-enzyme A (HMG-CoA) reductase that is a rate-limiting enzyme of mevalonate pathway, down-regulates expression of PBK by impairing protein geranylgeranylation. The shRNA knockdown demonstrated that Yes-associated protein (YAP) mediates geranylgeranylation-regulated expression of PBK. Importantly, atorvastatin or the geranylgeranyltransferase I inhibitor GGTI-298 inhibited breast cancer cell proliferation through inactivation of YAP signaling and down-regulation of PBK. These findings have defined a new signaling pathway that regulated expression of PBK and identified PBK as a downstream target of the Hippo-YAP signaling, uncoverd a mechanism underlying the anti-cancer effect by inhibition of mevalonate pathway and geranylgeranylation, and provided a potential target for breast cancer targeted therapy.

4.
Prostate ; 74(10): 999-1011, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24802614

RESUMEN

BACKGROUND: Previous studies have shown that COX-2 inhibitors inhibit cancer cell proliferation. However, the molecular mechanism remains elusive. METHODS: Prostate cancer LNCaP, 22Rv1, and PC3 cells were cultured and treated with the COX-2 inhibitors celecoxib and CAY10404. Knockdown of COX-2 in LNCaP cells was carried out using lentiviral vector-loaded COX-2 shRNA. Cell cycle progression and cell proliferation were analyzed by flow cytometry, microscopy, cell counting, and the MTT assay. The antagonists of EP1, EP2, EP3, and EP4 were used to examine the effects of the PGE2 signaling. The effect of COX-2 inhibitors and COX-2 knockdown on expression of the kinetochore/centromere genes and proteins was determined by RT-PCR and immunoblotting. RESULTS: Treatment with the COX-2 inhibitors celecoxib and CAY10404 or knockdown of COX-2 significantly inhibited prostate cancer cell proliferation. Flow-cytometric analysis and immunofluorescent staining confirmed the cell cycle arrested at the G2/M phase. Biochemical analysis showed that inhibition of COX-2 or suppression of COX-2 expression induced a dramatic down-regulation of key proteins in the kinetochore/centromere assembly, such as ZWINT, Cdc20, Ndc80, CENP-A, Bub1, and Plk1. Furthermore, the EP1 receptor antagonist SC51322, but not the EP2, EP3, and EP4 receptor antagonists, produced similar effects to the COX-2 inhibitors on cell proliferation and down-regulation of kinetochore/centromere proteins, suggesting that the effect of the COX-2 inhibition is through inactivation of the EP1 receptor signaling. CONCLUSIONS: Our studies indicate that inhibition of COX-2 can arrest prostate cancer cell cycle progression through inactivation of the EP1 receptor signaling and down-regulation of kinetochore/centromere proteins.


Asunto(s)
Centrómero/efectos de los fármacos , Inhibidores de la Ciclooxigenasa 2/farmacología , Cinetocoros/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Autoantígenos/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Centrómero/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/genética , Ciclooxigenasa 2/fisiología , Regulación hacia Abajo , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Cinetocoros/metabolismo , Masculino , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas/fisiología , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Subtipo EP1 de Receptores de Prostaglandina E/fisiología
5.
Biochem J ; 445(2): 255-64, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22553920

RESUMEN

ACK [activated Cdc42 (cell division cycle 42)-associated tyrosine kinase; also called TNK2 (tyrosine kinase, non-receptor, 2)] is activated in response to multiple cellular signals, including cell adhesion, growth factor receptors and heterotrimeric G-protein-coupled receptor signalling. However, the molecular mechanism underlying activation of ACK remains largely unclear. In the present study, we demonstrated that interaction of the SH3 (Src homology 3) domain with the EBD [EGFR (epidermal growth factor receptor)-binding domain] in ACK1 forms an auto-inhibition of the kinase activity. Release of this auto-inhibition is a key step for activation of ACK1. Mutation of the SH3 domain caused activation of ACK1, independent of cell adhesion, suggesting that cell adhesion-mediated activation of ACK1 is through releasing the auto-inhibition. A region at the N-terminus of ACK1 (Leu10-Leu14) is essential for cell adhesion-mediated activation. In the activation of ACK1 by EGFR signalling, Grb2 (growth-factor-receptor-bound protein 2) mediates the interaction of ACK1 with EGFR through binding to the EBD and activates ACK1 by releasing the auto-inhibition. Furthermore, we found that mutation of Ser445 to proline caused constitutive activation of ACK1. Taken together, our studies have revealed a novel molecular mechanism underlying activation of ACK1.


Asunto(s)
Adhesión Celular , Receptores ErbB/metabolismo , Retroalimentación Fisiológica , Proteína Adaptadora GRB2/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Western Blotting , Proliferación Celular , Células Cultivadas , Receptores ErbB/genética , Proteína Adaptadora GRB2/antagonistas & inhibidores , Proteína Adaptadora GRB2/genética , Humanos , Inmunoprecipitación , Riñón/citología , Riñón/metabolismo , Proteínas Tirosina Quinasas/genética , ARN Interferente Pequeño/genética , Dominios Homologos src
6.
Cancer Biol Ther ; 12(8): 691-9, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21768780

RESUMEN

Our previous studies have demonstrated that atorvastatin induces autophagy in the androgen receptor negative prostate cancer PC3 cells through inhibition of geranylgeranyl biosynthesis [Parikh et al., Prostate. 70(9): 971-981 (2010)]. This study attempts to elucidate the molecular mechanism underlying atorvastatin-induced autophagy in PC3 cells. PC3 cells were treated with atorvastatin, in combination with the inhibitors for transcription, protein translation, PI-3 kinase, mTOR, and MAP kinases. The atorvastatin-induced elevation of LC3-II was inhibited by both the translational and the transcriptional inhibitors, suggesting that the inhibition of geranylgeranyl biosynthesis by atorvastatin activates transcription of LC3, which results in elevation of LC3-II and activation of autophagy. RT-PCR and quantitative PCR assays showed that atorvastatin enhanced expression of LC3 mRNA, and addition of geranylgeraniol along with atorvastatin to the medium eliminated the enhancement, confirming the activation of transcription of LC3 is caused by atorvastatin-mediated inhibition of geranylgeranyl biosynthesis. Further, we found that both the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125, inhibited the atorvastatin-induced elevation of LC3-II, suggesting that the effect of atorvastatin on autophagy is mediated by the Erk and JNK pathways. Taken together, atorvastatin induces autophagy in prostate cancer PC3 cells through activation of LC3 transcription.


Asunto(s)
Autofagia/efectos de los fármacos , Ácidos Heptanoicos/farmacología , Proteínas Asociadas a Microtúbulos/genética , Neoplasias de la Próstata/tratamiento farmacológico , Pirroles/farmacología , Atorvastatina , Procesos de Crecimiento Celular/efectos de los fármacos , Procesos de Crecimiento Celular/genética , Diterpenos/farmacología , Células HEK293 , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Serina-Treonina Quinasas TOR/metabolismo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
7.
J Biol Chem ; 285(16): 12279-88, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20172859

RESUMEN

Nedd4 E3 ligases are members of the HECT E3 ubiquitin ligase family and regulate ubiquitination-mediated protein degradation. In this report, we demonstrate that calcium releases the C2 domain-mediated auto-inhibition in both Nedd4-1 and Nedd4-2. Calcium disrupts binding of the C2 domain to the HECT domain. Consistent with this, calcium activates the E3 ubiquitin ligase activity of Nedd4. Elevation of intracellular calcium by ionomycin treatment, or activation of acetylcholine receptor or epidermal growth factor receptor by carbachol or epidermal growth factor stimulation induced activation of endogenous Nedd4 in vivo evaluated by assays of either Nedd4 E3 ligase activity or ubiquitination of Nedd4 substrate ENaC-beta. The activation effect of calcium on Nedd4 E3 ligase activity was dramatically enhanced by a membrane-rich fraction, suggesting that calcium-mediated membrane translocation through the C2 domain might be an activation mechanism of Nedd4 in vivo. Our studies have revealed an activation mechanism of Nedd4 E3 ubiquitin ligases and established a connection of intracellular calcium signaling to regulation of protein ubiquitination.


Asunto(s)
Calcio/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Señalización del Calcio , Línea Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/antagonistas & inhibidores , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Activación Enzimática , Canales Epiteliales de Sodio/metabolismo , Humanos , Técnicas In Vitro , Modelos Biológicos , Mutagénesis , Ubiquitina-Proteína Ligasas Nedd4 , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Especificidad por Sustrato , Transfección , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
8.
Prostate ; 70(9): 971-81, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20135644

RESUMEN

BACKGROUND: Autophagy is a cellular process of degradation of macromolecules and organelles and activated under nutritional stress. Statins are a class of inhibitors of 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a key enzyme in synthesis of cholesterol. Epidemiological studies have shown that statin use decreases the incidence of advanced prostate cancer. We explored the idea that treatment of atorvastatin, a commonly prescribed statin for treatment of hypercholesterolemia, induces autophagy in prostate cancer cells. METHODS: The atorvastatin-induced autophagic process in prostate cancer PC3 cells was determined by detection of cellular level of LC3-II, an autophagosomal marker, via immunoblotting and immunofluorescent staining. RESULTS: Atorvastatin treatment of PC3 cells for 40 hrs increased expression of LC3-II by more than 10 fold in a dose-dependent manner. Treatment of the cells with pepstatin A and E64-d, the autophagic protease inhibitors, dramatically increased atorvastatin-dependent LC3-II expression level, suggesting that atorvastatin induces autophagic flux. In addition, atorvastatin treatment caused rapid death of PC3 cells. Atorvastatin-induced autophagy and rapid cell death were reversed by addition of geranylgeraniol, not farnesol, into culture medium, indicating that atorvastatin-mediated inhibition of geranylgeranyl biosynthesis causes autophagy and cell death. Furthermore, atorvastatin did not induce autophagy or cell death in normal prostate RWPE1 cells, and induced only a minor autophagic response in AR-positive prostate cancer LNCaP cells. CONCLUSIONS: Our studies demonstrate that statins induce autophagy and autophagy-associated cell death in PC3 cells, likely through inhibition of geranylgeranylation, and suggest that autophagic response to statins may partially underlie the protective effects of statins on prostate cancer progression. Importantly, these findings highlight additional mechanisms by which statins might be used for prostate cancer therapy.


Asunto(s)
Autofagia/efectos de los fármacos , Ácidos Heptanoicos/farmacología , Prenilación/efectos de los fármacos , Próstata/metabolismo , Pirroles/farmacología , Anticolesterolemiantes/farmacología , Atorvastatina , Autofagia/fisiología , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Prenilación/fisiología , Próstata/efectos de los fármacos
9.
Mol Cell Biol ; 30(6): 1541-54, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20086093

RESUMEN

ACK (activated Cdc42-associated tyrosine kinase) (also Tnk2) is an ubiquitin-binding protein and plays an important role in ligand-induced and ubiquitination-mediated degradation of epidermal growth factor receptor (EGFR). Here we report that ACK is ubiquitinated by HECT E3 ubiquitin ligase Nedd4-1 and degraded along with EGFR in response to EGF stimulation. ACK interacts with Nedd4-1 through a conserved PPXY WW-binding motif. The WW3 domain in Nedd4-1 is critical for binding to ACK. Although ACK binds to both Nedd4-1 and Nedd4-2 (also Nedd4L), Nedd4-1 is the E3 ubiquitin ligase for ubiquitination of ACK in cells. Interestingly, deletion of the sterile alpha motif (SAM) domain at the N terminus dramatically reduced the ubiquitination of ACK by Nedd4-1, while deletion of the Uba domain dramatically enhanced the ubiquitination. Use of proteasomal and lysosomal inhibitors demonstrated that EGF-induced ACK degradation is processed by lysosomes, not proteasomes. RNA interference (RNAi) knockdown of Nedd4-1, not Nedd4-2, inhibited degradation of both EGFR and ACK, and overexpression of ACK mutants that are deficient in either binding to or ubiquitination by Nedd4-1 blocked EGF-induced degradation of EGFR. Our findings suggest an essential role of Nedd4-1 in regulation of EGFR degradation through interaction with and ubiquitination of ACK.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Línea Celular , Secuencia Conservada , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Técnicas de Silenciamiento del Gen , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Ubiquitina-Proteína Ligasas Nedd4 , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/química , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/química , Ubiquitinación/efectos de los fármacos
10.
Cell Signal ; 20(4): 779-86, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18255265

RESUMEN

Ligand-induced receptor degradation is an important process for down-regulation of plasma membrane receptors. While epidermal growth factor receptor (EGFR) is rapidly internalised and degraded upon ligand stimulation, ErbB2, the closest member to EGFR in ErbB receptor family, is resistant in ligand-induced degradation. To understand the molecular mechanisms underlying the impairment in ligand-induced degradation of ErbB2, we attempted to determine structural factor in ErbB2 that restricts the degradation. By analysis of ligand-induced degradation of EGFR/ErbB2 chimeras, we have identified a region between amino acid residues F1030 and L1075 in ErbB2 as the domain that restricts the ligand-induced degradation. We designated this domain as the Blocking ErbB2 Degradation or the BED domain. Replacement of the BED domain in an EGFR/ErbB2 chimera with the corresponding region of EGFR changed this chimera from a non-degradable to a degradable receptor, indicating that the BED domain is the factor restricting the ligand-induced degradation of ErbB2. In addition, we found that a non-degradable EGFR/ErbB2 chimera was not defective in tyrosine phosphorylation, ubiquitination and interaction with c-Cbl, rather, was defective in ligand-induced internalisation, suggesting that the endocytosis defect is the cause restricting the degradation of ErbB2, and that c-Cbl-catalysed mono-ubiquitination is not involved in the impairment in ligand-induced degradation of ErbB2.


Asunto(s)
Endocitosis , Factor de Crecimiento Epidérmico/metabolismo , Receptor ErbB-2/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Humanos , Ligandos , Datos de Secuencia Molecular , Fosforilación , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Receptor ErbB-2/química , Receptor ErbB-2/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Tirosina/metabolismo , Ubiquitina/metabolismo
11.
Mol Biol Cell ; 18(3): 732-42, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17182860

RESUMEN

Cdc42-associated tyrosine kinase 1 (ACK1) is a specific down-stream effector of Cdc42, a Rho family small G-protein. Previous studies have shown that ACK1 interacts with clathrin heavy chain and is involved in clathrin-coated vesicle endocytosis. Here we report that ACK1 interacted with epidermal growth factor receptor (EGFR) upon EGF stimulation via a region at carboxy terminus that is highly homologous to Gene-33/Mig-6/RALT. The interaction of ACK1 with EGFR was dependent on the kinase activity or tyrosine phosphorylation of EGFR. Immunofluorescent staining using anti-EGFR and GFP-ACK1 indicates that ACK1 was colocalized with EGFR on EEA-1 positive vesicles upon EGF stimulation. Suppression of the expression of ACK1 by ACK-RNAi inhibited ligand-induced degradation of EGFR upon EGF stimulation, suggesting that ACK1 plays an important role in regulation of EGFR degradation in cells. Furthermore, we identified ACK1 as an ubiquitin-binding protein. Through an ubiquitin-association (Uba) domain at the carboxy terminus, ACK1 binds to both poly- and mono-ubiquitin. Overexpression of the Uba domain-deletion mutant of ACK1 blocked the ligand-dependent degradation of EGFR, suggesting that ACK1 regulates EGFR degradation via its Uba domain. Taken together, our studies suggest that ACK1 senses signal of EGF and regulates ligand-induced degradation of EGFR.


Asunto(s)
Receptores ErbB/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Células CHO , Células COS , Chlorocebus aethiops , Secuencia Conservada , Cricetinae , Cricetulus , Factor de Crecimiento Epidérmico/farmacología , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Proteínas Tirosina Quinasas/química , Transducción de Señal/efectos de los fármacos , Ubiquitina/metabolismo
12.
Biochem J ; 394(Pt 3): 693-8, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16316319

RESUMEN

SH3PX1 [SNX9 (sorting nexin 9)] is a member of SNX super-family that is recognized by sharing a PX (phox homology) domain. We have previously shown that SH3PX1, phosphorylated by ACK2 (activated Cdc42-associated tyrosine kinase 2), regulates the degradation of EGF (epidermal growth factor) receptor. In mapping the tyrosine phosphorylation region, we found that the C-terminus of SH3PX1 is required for its tyrosine phosphorylation. Further analysis indicates that this region, known as the coiled-coil domain or the BAR (Bin-amphiphysin-Rvs homology) domain, is the dimerization domain of SH3PX1. Truncation of as little as 13 amino acid residues at the very C-terminus in the coiled-coil/BAR domain of SH3PX1 resulted in no dimerization, no ACK2-catalysed and EGF-stimulated tyrosine phosphorylation and no interaction with ACK2. The intracellular localization of SH3PX1 became dysfunctional upon truncation in the BAR domain. Taken together, our results indicate that the dimerization, which is mediated by the BAR domain, is essential for the intracellular function of SH3PX1.


Asunto(s)
Proteínas Portadoras/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Animales , Células COS , Proteínas Portadoras/genética , Chlorocebus aethiops , Dimerización , Humanos , Mutación , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Nexinas de Clasificación , Proteínas de Transporte Vesicular
13.
Biochem J ; 382(Pt 1): 199-204, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15144235

RESUMEN

ACK2 (activated Cdc42-associated tyrosine kinase 2) is a specific downstream effector for Cdc42, a member of the Rho family of small G-proteins. ACK2 interacts with clathrin, an endocytic vesicle coating protein, and SH3PX1, a sorting nexin, and is involved in clathrin-mediated endocytosis. While searching for proteins that interact with ACK2, we found that HSP90 (heat-shock protein 90) binds to ACK2. Analysis of a series of truncation mutants of ACK2 has defined the regions within the kinase domain of ACK2 that are required for binding to HSP90. The binding of HSP90 to ACK2 is blocked upon treatment with geldanamycin, an HSP90-specific ATPase inhibitor, and is required for the in vivo kinase activity of ACK2 and its association with Cdc42. Overall, our data suggest a novel mechanism of regulation in which HSP90 serves as a regulatory component in an ACK2 functional complex and plays a role in sustaining its kinase activity.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Células COS/química , Células COS/metabolismo , Dominio Catalítico , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Clonación Molecular , Proteínas HSP90 de Choque Térmico/inmunología , Inmunoprecipitación/métodos , Ratones , Neuroblastoma/genética , Neuroblastoma/patología , Fosfotransferasas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Proteínas Tirosina Quinasas/inmunología , Proteína de Unión al GTP cdc42/metabolismo
14.
J Biol Chem ; 279(29): 30507-13, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15123659

RESUMEN

The Rho family small G-protein Cdc42 has been implicated in a diversity of biological functions. Multiple downstream effectors have been identified. How Cdc42 discriminates the interaction with its multiple downstream effectors is not known. Activated Cdc42-associated tyrosine kinase (ACK) is a very specific effector of Cdc42. To delineate the Cdc42 signaling pathway mediated by ACK, we set about to identify the specific ACK-binding region in Cdc42. We utilized TC10, another member of the Rho family of G-proteins that is 66.7% identical to Cdc42, to construct TC10/Cdc42 chimeras for screening the specific ACK-binding region in Cdc42. A region between switch I and switch II has been identified as the specific ACK-binding (AB) region. The replacement of the AB region with the corresponding region in TC10 resulted in the complete loss of ACK-binding ability but did not affect the binding to WASP, suggesting that the AB region confers the binding specificity to ACK. On the other hand, replacement of the corresponding region of TC10 with the AB region enabled TC10 to acquire ACK-binding ability. Eight residues are different between the AB region and the corresponding region of TC10. The mutational analysis indicated that all eight residues contribute to the binding to ACK2. The assays for the Cdc42-mediated activation of ACK2 indicated that the AB region is essential for Cdc42 to activate ACK2 in cells. Thus, our studies have defined a specific ACK-binding region in Cdc42 and have provided a molecular basis for generating ACK binding-defective mutants of Cdc42 to delineate ACK-mediated signaling pathway.


Asunto(s)
Proteínas Tirosina Quinasas/metabolismo , Proteína de Unión al GTP cdc42/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Análisis Mutacional de ADN , GTP Fosfohidrolasas/metabolismo , Glutatión Transferasa/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Mutación Puntual , Pruebas de Precipitina , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Especificidad por Sustrato , Factores de Tiempo , Transfección , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA