Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 39: 101758, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39108619

RESUMEN

Diospyros batokana (Ebenaceae) is a valuable medicinal plant that grows in the wild in Zambia. The aqua crude plant extract is valuable in treating oxidative stress and microbes-related diseases. In this study, bioactive metabolites from the leaf of the plant were tentatively identified using ultra-high-pressure liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS). Raw LCMS data were processed using MZmine3.6. Pyrenophorol, N-[1-(diethylamino)-3-morpholin-4-ylpropan-2-yl]-2,2-diphenylacetamide, losartan, and isoarthonin, (2E,4E)-N-[2-(4-hydroxyphenyl)ethyl]dodeca-2,4-dienamide were among the many metabolites identified from the plant studied using LCMS-MZmine 3.6. Furthermore, in silico anti-inflammatory molecular docking was applied to the five (5) metabolites with the aim of predicting the ability of the metabolites to inhibit the COX-2 enzyme. The docking simulation for the five metabolites was executed using the Auto-dock tools. The lowest binding energy of the complexes was visualized using Discovery Studio, 2021 Client l molecular viewer. Pyrenophorol, (N-[1-(diethylamino)-3-morpholin-4-ylpropan-2-yl] -2,2-diphenylacetamide) and losartan were found to provide the lowest binding energy to COX-2 compared to the standard anti-inflammatory drug, diclofenac. Furthermore, binding affinities, inhibition constants, and ligand efficiencies demonstrated that pyrenophorol, N-[1-(diethylamino)-3-morpholin-4-ylpropan-2-yl]-2,2-diphenylacetamide, losartan, isoarthonin and (2E,4E)-N-[2-(4-hydroxyphenyl)ethyl]dodeca-2,4-dienamide could be useful as anti-inflammatory drug candidates supporting the traditional uses of D. batokana. However, the bioavailability radar and physicochemical properties only predict losartan, pyrenophorol, and (2E,4E)-N-[2-(4-hydroxyphenyl)ethyl]dodeca-2,4-dienamide to be bioavailable and suitable drug candidates. In silico and ADMET analysis, shows that the five metabolites could be used as anti-inflammatory drugs comparable to the standard drugs, diclofenac and ibuprofen. However, in vitro and in vivo studies are needed to further support our findings.

2.
Waste Manag ; 189: 148-158, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197183

RESUMEN

Paper packaging made with recycled paperboard is used to pack various consumer goods that can include amongst others, electronics, toys, food, cosmetics, and stationery. Chemical profiling of the various paper recycling grades used in the manufacture of recycled paperboard was undertaken to investigate possible sources of contaminants and their propagation in the paper recycling chain. Pre-consumer, retail and post-consumer paper-based materials were collected at papermills, corrugators, grocery stores, household waste, solid waste disposal sites and recycling facilities. In the GC-MS analysis, phthalates, long-chain aliphatic compounds, and fatty acids were the most commonly detected compounds whilst phthalates and bisphenols featured most prevalently in the LC-MS analysis. The factors that were identified as likely contributors to the detection of the different chemical compounds included the presence of wood derivatives, the use of certain chemical additives during manufacturing, and exposure of paper to contaminants from consumers, other goods and the environment. Waste mingling, recovery, sorting and reprocessing into recycled paper were also shown to influence the chemical profile of paper materials. Sparse partial least squares-discriminate analysis indicated that newspaper and office paper had unique chemical constituents, whilst cartons were shown to have higher variability. By looking at key stages of paper recycling, this study showed that the possible persistence and transformation of chemical compounds in additives must be evaluated when considering the recyclability of paper-based materials. Further, it highlighted that different separation approaches may be required to reduce contaminant exposure opportunities in post-consumer paper materials.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Papel , Reciclaje , Reciclaje/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Ácidos Ftálicos/análisis , Cromatografía Liquida/métodos , Fenoles/análisis , Compuestos de Bencidrilo/análisis , Residuos Sólidos/análisis , Cromatografía Líquida con Espectrometría de Masas
3.
Chemosphere ; 363: 142904, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033859

RESUMEN

Non-targeted analysis and suspect screening of per- and polyfluoroalkyl substances (PFAS) in various matrices have gained traction with advancements in accurate mass analytical instruments. This study employed ultra-high performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for PFAS suspect screening of paper grades used in the paper recycling chain. The samples were prepared using two extraction techniques; selective accelerated solvent extraction with weak anionic exchange solid-phase extraction and non-selective ultrasonic-assisted extraction. A suspect screening protocol was established to tentatively identify suspected PFAS against spectral databases using a systematic approach of peak filtering and study-specific thresholds for reporting, linked to a confidence level. The possible prevalence of previously unreported PFAS in several paper materials across the various collection sites in the paper recycling chain was inferred by the common detection of short-chain polyfluoroalkyl ketones and diketones in the paper recycling chain. The suspect screening tentatively identified 41 unique PFAS, with 3 common to both pre-treatment techniques. The detection of unique PFAS by the two sample pre-treatment techniques highlighted the significance of both selective and non-selective extraction in PFAS screening endeavours. Further, it showed the importance of understanding the acquisition mechanisms employed in mass spectrometry where data-dependent acquisition triggered fragmentation in certain identified compounds, and not in others. The tentatively identified PFAS indicated that there were several previously unreported PFAS in the paper recycling chain and that additional studies were required to investigate their abundance, possible persistence, bioaccumulation and toxicity, in relation to their functional groups and carbon chains.


Asunto(s)
Fluorocarburos , Papel , Cromatografía Líquida de Alta Presión , Fluorocarburos/análisis , Extracción en Fase Sólida/métodos , Espectrometría de Masas , Contaminantes Ambientales/análisis , Reciclaje , Monitoreo del Ambiente/métodos
4.
Sci Total Environ ; 949: 174800, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39009155

RESUMEN

The occurrence of 58 pharmaceutically active compounds (PhACs) in surface water at 28 coastal and five river sites, and in two stormwater flows in Cape Town, South Africa, was investigated in winter and summer. After accounting for quality assurance and control data, 33 PhACs were considered in detail. In winter, 25 PhACs were found at one or more sites and 27 in summer. Salicylic acid was the most widespread PhAC in each season. At least one PhAC was found at each site in each survey. The largest number found at a site was 22 at Lifebox23 Beach in winter and 23 at Macassar Beach and in the Black and Diep Rivers in summer. These sites are strongly directly or indirectly affected by wastewater treatment plant discharges. The range in ΣPhAC concentrations was 41 ng L-1 to 9.3 µg L-1 in winter and 109 ng L-1 to 18.9 µg L-1 in summer. The hazard posed by PhACs was estimated using Predicted No Effect Concentrations (PNEC) from several sources. Hazard Quotients (HQs) for numerous PhACs were >1, and for several even >10, including azithromycin, cimetidine, clarithromycin, erythromycin, and ibuprofen. The highest hazards were at coastal sites strongly indirectly affected by wastewater treatment plant discharges. Azithromycin, trimethoprim, and sulfamethoxazole at some sites may have promoted antibiotic resistance in bacteria, while irbesartan at some sites might have posed a hazard to fish according to the fish plasma model. The concentrations of several PhACs at some coastal sites are higher than concentrations reported in estuarine, coastal, and marine waters in other parts of the world.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Sudáfrica , Contaminantes Químicos del Agua/análisis , Preparaciones Farmacéuticas/análisis , Agua de Mar/química , Ríos/química , Aguas Residuales/química , Estaciones del Año
5.
J Hazard Mater ; 472: 134419, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691993

RESUMEN

The contamination of paper products by various chemicals has been reported on a global level, but to date, no published research has investigated pharmaceutical contamination of paper-based products. In this study, pharmaceutical analysis was conducted on 42 samples collected from various points of the recycled paper value chain in Cape Town, South Africa, which included the various grades that may be included in the manufacturing of recycled paperboard. The analysis was achieved by ultrasonic-assisted extraction of paper samples before detection by UHPLC-Q Orbitrap. Quantification limits ranged from 1.15 pg/g for ketoprofen to 46.07 pg/g for methocarbamol. Pharmaceuticals identified in newspaper samples were dexamethasone, ketoprofen, and 17ß-estradiol. The latter was also detected in paper shopping bags (up to 697.49 ng/g), infant bathtub packaging (280.62 ng/g), battery packaging (137.43 ng/g), and an egg carton (170.47 ng/g). Carbamazepine was also prominent with its concentration reaching 13.02 ng/g in a vegetable box. Suspect screening tentatively identified 14 additional pharmaceuticals in paper samples, with minocycline, prazepam, and anabolic steroids appearing more prominently. This pioneering study indicated that unintentional pharmaceutical exposure had expanded beyond environmental media to consumer products.


Asunto(s)
Papel , Reciclaje , Preparaciones Farmacéuticas/análisis , Sudáfrica , Cromatografía Líquida de Alta Presión
6.
Environ Sci Pollut Res Int ; 31(20): 30126-30136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602641

RESUMEN

Globally, per- and polyfluoroalkyl substances (PFAS)-related research on paper products has focused on food packaging with less consideration on the presence of PFAS at different stages of the paper recycling chain. This study analysed the prevalence of PFAS in paper grades used for the manufacture of recycled paperboard. The presence of PFAS was attributed to the use of PFAS-containing additives, consumer usage, exposure to packed goods as well as contamination during mingling, sorting, collection, and recovery of paper recycling material. Q Orbitrap mass spectrometry was used to analyse the paper samples after accelerated solvent extraction and solid phase extraction. The distribution and possible propagation of 22 PFAS were determined in pre-consumer, retail and post-consumer paper products. Post-consumer samples had the highest combined average concentration (ΣPFAS) at 213 ng/g, while the ΣPFAS in retail (159 ng/g) and pre-consumer samples (121 ng/g) was detected at lower concentrations. This study showed that waste collection and recycling protocols may influence PFAS propagation and that measures must be developed to minimise and possibly eliminate exposure opportunities.


Asunto(s)
Fluorocarburos , Espectrometría de Masas , Papel , Reciclaje , Fluorocarburos/análisis , Cromatografía Líquida de Alta Presión , Extracción en Fase Sólida
7.
ACS Omega ; 9(5): 5592-5600, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343960

RESUMEN

This study responds to stringent environmental regulations and increasing focus on resource conservation by exploring economically viable refining technologies through recycling. With the rising costs of filtrate disposal, there is a significant emphasis on removing and recycling valuable constituents, particularly nickel and copper (Ni and Cu). Herein, we employ analytical techniques with the aim of investigating an alternative method for recovering Ni and other valuable metals from a nickel sulfide-fire assay filtrate using S-curve precipitation under optimal conditions. The waste from the fire assay procedure contains substantial amounts of Ni and other critical metals, with concentrations of 62.7 g/L of Ni and 3.87 g/L of Cu. Prior to precipitation, traditional solvent extraction was used for Cu extraction, selectively removed before separating primary impurities such as iron (Fe). A pivotal aspect of this research involves applying S-curve precipitation with precise parameters at different pH levels. Analytical techniques reveal a minor depletion occurs as Ni is separated from Fe at a pH of 2.5, resulting in the formation of a refined Ni stream that is then refined into a mixed hydroxide Ni(OH)2 product. The efficiency of 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX 63-70) in extracting value-added metals from fire assay waste is exceptionally high, integrating recycling and repurposing of value-added base metals to promote a circular economy.

8.
Bull Environ Contam Toxicol ; 112(1): 23, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180521

RESUMEN

Microplastics (MPs) have emerged as a global environmental concern due to their persistent nature. In South Africa, microplastic research has primarily focused on marine systems. However, recent years have seen a shift in focus to studying MPs in South African freshwaters. In this study, MPs with a minimum size of 0.055 mm in surface water of the Vaal River, South Africa, were reported. MPs were 100% prevalent, with a mean numerical abundance of 0.68 ± 0.64 particles/m3. Small-sized MPs of < 1 mm accounted for the largest proportion. MPs were chemically identified as high-density polyethylene, low-density polyethylene, and polypropylene according to their Raman spectra. The prevalence of fragments (41.6%) and fibers (38.5%) over pellets (8.1%) indicates that microplastics are from secondary sources. The prevalence of polyethylene and polypropylene is consistent with microplastics being from secondary sources. These polymers are commonly used in single-use plastics, packing bags, textiles, and containers. These characteristics are of great concern due to their implications on the bioavailability and toxicological impacts of MPs. Consequently, these properties may pose more hazards to aquatic biota inhabiting the Vaal River.


Asunto(s)
Microplásticos , Ríos , Plásticos , Sudáfrica , Polipropilenos , Polietileno , Agua
9.
Int J Environ Health Res ; 34(3): 1566-1579, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37394914

RESUMEN

The research focused on risk assessment of some heavy metals in common vegetables and fish sold on open markets in three towns of Zambia. The mean level of heavy metals ranged as follows (mg/kg): 1.9 to 662.7, 3.0 to 3472.3 and 2.0 to 1698.7 of cadmium (lowest) and aluminium (highest) for samples from Kabwe, Kitwe and Lusaka, respectively. Statistical analysis indicated that the concentrations of samples from Kitwe and Lusaka towns were similar, P > 0.05. However, there were noteworthy differences in the mean amounts of heavy metals in samples from Kitwe and Kabwe, and samples from Kabwe and Lusaka towns, P < .0167. The health risk analysis indicates possible non-carcinogenic and carcinogenic risks to the consumer. This is because the hazard index (HI) for all metals in all samples from all towns was greater than 1 and the cancer risk (CR) for cadmium was above 10-4 in all samples from all towns.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Animales , Cadmio/análisis , Ciudades , Zambia , Metales Pesados/análisis , Medición de Riesgo , Monitoreo del Ambiente , Contaminantes del Suelo/análisis
10.
Crit Rev Anal Chem ; 53(6): 1197-1208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34908490

RESUMEN

Membrane protected extraction is an ongoing innovation for isolation and pre-concentration of analytes from complex samples. The extraction process, clean-up and pre-concentration of analytes occur in a single step. The inclusion of solid sorbents such as molecularly imprinted polymers (MIPs) after membrane extraction ensures that selective double extraction occurs in a single step. The first step involves selective extraction using the membrane and diffused analytes are trapped on the solid sorbent enclosed in the membrane. No further clean-up is required even for very dirty samples like plant extracts and wastewaters samples. Sample clean-up occurs during extraction in the first process and not as additional step since matrix components are prevented from trapping on the sorbent. This can be referred to as prevention is better than cure approach. In this work, the analytical methods that employed membrane protected extraction for various organics such as pesticides, polycyclic aromatic hydrocarbons, and pharmaceuticals are reviewed. The designs of these analytical methods, their applications, advantages and drawbacks are discussed in this review. Literature suggests that the introduction of solid sorbents in membrane creates the much-needed synergy in selectivity. Previous reviews focused on membrane combinations with MIPs while discussing micro-solid-phase extraction. The scope of this review was broadened to include other sample preparation aspects such as membrane protected stir bar solvent extraction and membrane protected solid-phase microextraction. In addition, novel sample preparation methods for solid samples which include Soxhlet membrane protected molecular imprinted solid phase extraction and membrane protected ultra sound assisted extracted are discussed.


Asunto(s)
Plaguicidas , Hidrocarburos Policíclicos Aromáticos , Extracción en Fase Sólida/métodos , Microextracción en Fase Sólida/métodos , Polímeros Impresos Molecularmente
11.
Water Res ; 225: 119145, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179429

RESUMEN

In this work, we demonstrate the development, evaluation and pre-liminary application of a novel passive sampler for monitoring of selected pharmaceuticals in environmental waters. The samplers were calibrated in laboratory-based experiments to obtain sampling rates (Rs) for carbamazepine, methocarbamol, etilefrine, venlafaxine and nevirapine. Passive sampling was based on the diffusion of the target pharmaceuticals from surface water through a membrane bag which housed an ionic liquid as a green receiving solvent and a molecularly imprinted polymer. Effects of biofouling, deployment time and solvent type for the receiver phase were optimized for selective uptake of analytes in surface water. Notably, there was a decrease in the uptake of selected pharmaceuticals and consequently a decrease in their sampling rates in the presence of biofouling. The optimum matrix-matched sampling rates ranged from 0.0007 - 0.0018 L d-1 whilst the method detection and quantification limits ranged from 2.45 - 3.26 ng L-1 and 8.06 - 10.81 ng L-1, respectively. The optimized passive sampler was deployed in a dam situated in the heart of a typical highly populated township in the Gauteng Province of South Africa. Only etilefrine and methocarbamol were detected and quantified at maximum time weighted average concentrations of 12.88 and 72.29 ng L-1, respectively.


Asunto(s)
Etilefrina , Líquidos Iónicos , Metocarbamol , Contaminantes Químicos del Agua , Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Polímeros Impresos Molecularmente , Clorhidrato de Venlafaxina , Nevirapina , Sudáfrica , Carbamazepina , Preparaciones Farmacéuticas
12.
Sci Total Environ ; 836: 155623, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35508237

RESUMEN

Fish inhabiting freshwater environments are susceptible to the ingestion of microplastics (MPs). Knowledge regarding MPs in freshwater fish in South Africa is very limited. In this study, the uptake of MPs by common carp (Cyprinus carpio) in the Vaal River in South Africa was assessed. MPs were detected in all of the twenty-six fish examined, 682 particles of MPs were recovered from the gastrointestinal tracts of the fish with an average of 26.23 ± 12.57 particles/fish, and an average abundance of 41.18 ± 52.81 particles/kg. The examination of the physical properties of MPs revealed a predominance on fibers (69%), small-sized particles of less than 0.5 mm (48%), as well as prevelance of coloured MPs (94%), mostly green, blue, and black. Using Raman Spectroscopy, the following plastic polymers were identified: high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE). To the best of our knowledge, this study, is the first to report MPs uptake by freshwater biota in the Vaal River using common carp as a target organism. It provided evidence of MP contamination in the Vaal.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Monitoreo Biológico , Monitoreo del Ambiente , Microplásticos , Plásticos , Polietileno , Ríos , Contaminantes Químicos del Agua/análisis
13.
Environ Monit Assess ; 194(2): 117, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35072821

RESUMEN

A survey of bioavailable polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like PCBs (dl-PCBs), and polybrominated biphenyls (PBBs) from ambient air, water and sediment was performed in the Hartbeespoort Dam area in South Africa, a region where data on highly toxic Stockholm Convention persistent organic pollutants (POPs) is scanty. The sampling was designed to simulate POP bioaccumulation in benthic and aquatic dwelling organisms as well as ambient air for estimation of ecological risk. The objective was to survey the spatiotemporal distribution and fate of bioavailable priority persistent organic compounds in the Hartbeespoort Dam in summer, autumn and winter seasons and to validate the utility of a comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GCxGC-TOF) method for PCDD/F, PCB, and PBB analysis. The highest detection rates for bioavailable priority POPs were for PCB 77 and PCB 126 which were detected in 15 and 16 of the 22 samples, though the majority of the detections were < LOQ for PCB 77. Overall, PCB 126, PBB 10 and PBB 49 recorded the highest quantified bioavailable concentrations per site in SPMDs deployed in the Hartbeespoort Dam. The SPMDs deployed in air at the Magalies River site in winter recorded the highest toxic equivalency quotient (TEQ) of 29.77 pg TEQ SPMD-1. The highest TEQs recorded for SPMDs deployed in the sediment phase were 10.2, 3.3, and 3.2 pg TEQ SPMD-1, recorded at the Harbour site in summer, Dam wall in summer and Harbour in winter respectively. In water, SPMDs deployed at the Crocodile River site recorded the highest TEQ of 0.81 pg TEQ SPMD-1 in summer. TEQ data shows that air carries significant bioavailable dl-toxicity compared to the water phase, and sediment generally carries the highest dl-toxicity. Detection rates for bioavailable PBBs were generally very low, with < 3 detections being quantified above the LOQ for the majority of the sites. Statistical analysis of TEQs computed at all sites, using AVOVA shows that the dispersion of TEQs in the Hartbeespoort Dam is largely homogenous as the differences between the TEQs were insignificant (p > 0.05).


Asunto(s)
Benzofuranos , Dioxinas , Bifenilos Polibrominados , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Benzofuranos/análisis , Dibenzofuranos Policlorados/análisis , Dioxinas/análisis , Monitoreo del Ambiente , Bifenilos Policlorados/análisis , Dibenzodioxinas Policloradas/análisis , Sudáfrica , Agua
14.
Environ Toxicol Chem ; 41(2): 437-447, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34888926

RESUMEN

In spite of recent reports about the presence of pharmaceuticals in African water bodies, their prevalence has still not been sufficiently quantified. The few available studies have mostly focused on a limited number of pharmaceuticals. In the present study, a suspect screening of 92 compounds (mainly pharmaceuticals and their transformation products) along the Klip River, South Africa was conducted, followed by target monitoring of 21 of the detected pharmaceuticals. The experimental approach was based on solid-phase extraction followed by analysis with ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS). The results revealed 47 pharmaceuticals, 31 of which were detected for the first time in South African waters. Seven detected pharmaceuticals (propyphenazole, sulfamerazine, levamisole, tryptophan, dibucaine, albuterol, and fenpropimorph) are not approved medications in South Africa. Six pharmaceutical metabolites were detected for the first time in South Africa. Pharmaceuticals with the highest concentrations in river water were flumequine (0.257 µg L-1 ), oxolinic acid (0.355 µg L-1 ), and acetaminophen (0.432 µg L-1 ). Oxolinic acid presented the highest hazard quotient, 48.6, indicating a risk of toxicity to aquatic organisms. Hazard quotients for other pharmaceuticals were below 1, except that of flumequine, which reached 1.285. These results suggest a need for further research into the fate of pharmaceuticals in surface waters, and a quantification of the risks associated with the identified drugs because they are likely to accumulate in the tissues of fish/aquatic organisms, thus affecting humans. Environ Toxicol Chem 2022;41:437-447. © 2021 SETAC.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Cromatografía Líquida de Alta Presión/métodos , Monitoreo del Ambiente/métodos , Espectrometría de Masas , Ácido Oxolínico/análisis , Preparaciones Farmacéuticas , Ríos/química , Sudáfrica , Agua , Contaminantes Químicos del Agua/análisis
15.
Chemosphere ; 286(Pt 3): 131973, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426269

RESUMEN

This work demonstrates development and evaluation of a two-way technique based on the combination of membrane assisted solvent extraction and a molecularly imprinted polymer (MASE-MIP) for selective and efficient extraction of five selected pharmaceuticals belonging to five different therapeutic classes. The pharmaceuticals were extracted from surface water samples followed by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-qTOF/MS) determination. A central composite design was applied to optimize the influence of the sample salt content, the stirring rate, the stirring time and the amount of MIP on the extraction of an anticonvulsant (carbamazepine), a cardiac stimulant (etilefrine), a muscle relaxant (methocarbamol), an antiretroviral (nevirapine) and an antidepressant (venlafaxine) from surface water. Optimization of the analytical method was performed by spiking water with a mixture of all five pharmaceuticals at 500 ng mL-1. Optimum extraction conditions for a sample volume of 18 mL were found to be 5 g of salt content, a stirring rate of 400 rpm, an extraction time of 60 min and 50 mg of MIP. The MASE-MIP-LC-qTOF/MS method gave detection and quantification limits ranging from 0.09 to 0.20 ng mL-1 and 0.31-0.69 ng mL-1, respectively. The spiked river water samples yielded recoveries ranging from 38 to 91% for the selected model compounds belonging to the five classes of pharmaceuticals. Upon the application of the developed analytical method in water analysis, all selected pharmaceuticals were detected in South African river water with nevirapine and venlafaxine being more prominent attaining the maximum concentrations of 1.64 and 2.48 ng mL-1, respectively.


Asunto(s)
Impresión Molecular , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Polímeros Impresos Molecularmente , Polímeros , Solventes , Agua , Contaminantes Químicos del Agua/análisis
16.
Sci Total Environ ; 799: 149483, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34426342

RESUMEN

This review reports on the increasing interest in technical designs, calibration, and application of PIM-based devices in sample pre-treatment and passive sampling in environmental water monitoring from 2010 to 2021. With regards to passive sampling, devices are calibrated in a laboratory setup using either a dip-in or flow-through approach before environmental application. In sample preparation, the device set-ups can be offline, online or in a continuous flow separation device connected to a flow injection analysis system. The PIMs have also demonstrated potential in both these offline and online separations; however, there is still a draw-back of low diffusion coefficients obtained in these PIM set-ups. Electro-driven membrane (EME) extraction has demonstrated better performance as well as improved analyte flux. Critical in electro-driven membrane extraction is applying correct voltage that may not compromise the PIM performance due to leaching of components to the aqueous solutions. Further, besides different PIM configurations and designs being developed, PIM based extractions are central to PIM components (base polymer, carrier and plasticizer). As such, recent studies have also focused on improving PIM stability by investigating use of various PIM components, incorporating nano additives into the PIM composition, and investigating novel green PIM synthetic routes. All these aspects are covered in this review. Further, some recent studies that have demonstrated the ability to eliminate effects of flow patterns and membrane biofouling in PIM based applications are also included.


Asunto(s)
Membranas Artificiales , Polímeros , Monitoreo del Ambiente , Agua
17.
Molecules ; 26(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199346

RESUMEN

Isolation of the therapeutic cannabinoid compounds from Cannabis Sativa L. (C. Sativa) is important for the development of cannabis-based pharmaceuticals for cancer treatment, among other ailments. The main pharmacological cannabinoids are THC and CBD. However, THC also induces undesirable psychoactive effects. The decarboxylation process converts the naturally occurring acidic forms of cannabinoids, such as cannabidiolic acid (CBDA) and tetrahydrocannabinolic acid (THCA), to their more active neutral forms, known as cannabidiol (CBD) and tetrahydrocannabinol (THC). The purpose of this study was to selectively extract cannabinoids using a novel in situ decarboxylation pressurized hot water extraction (PHWE) system. The decarboxylation step was evaluated at different temperature (80-150 °C) and time (5-60 min) settings to obtain the optimal conditions for the decarboxylation-PHWE system using response surface methodology (RSM). The system was optimized to produce cannabis extracts with high CBD content, while suppressing the THC and CBN content. The identification and quantification of cannabinoid compounds were determined using UHPLC-MS/MS with external calibration. As a result, the RSM has shown good predictive capability with a p-value < 0.05, and the chosen parameters revealed to have a significant effect on the CBD, CBN and THC content. The optimal decarboxylation conditions for an extract richer in CBD than THC were set at 149.9 °C and 42 min as decarboxylation temperature and decarboxylation time, respectively. The extraction recoveries ranged between 96.56 and 103.42%, 95.22 and 99.95%, 99.62 and 99.81% for CBD, CBN and THC, respectively.


Asunto(s)
Cannabinoides/aislamiento & purificación , Cannabis/química , Cannabinoides/química , Cromatografía Líquida de Alta Presión , Descarboxilación , Tecnología Química Verde , Calor , Espectrometría de Masas en Tándem
18.
Environ Monit Assess ; 193(5): 310, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33914171

RESUMEN

Pharmaceutical consumption is increasing worldwide as it is essential to treat and prevent health issues but they end up in the environment. However, in many African countries like Ethiopia, the status of these compounds in various environmental samples is not very well known. In this study, a simple method for the extraction and determination of thirteen pharmaceutical compounds of different therapeutic classes in water samples using solid-phase extraction and HPLC-DAD was developed. Different parameters affecting extraction were optimised and obtained as hydrophilic-lipophilic balance (HLB) extraction cartridge, water sample pH of 5, elution solvent of 2% formic acid in water with methanol (20:80%, v/v), a sample volume of 150 mL and addition of 0.5% w/v EDTA in the sample. The limits of detection and quantification of the optimised method were in the range of 0.1-0.8 µg/L and 0.2-2.6 µg/L, respectively. The relative recovery in the spiked environmental water sample was in the range of 70-117% except for amoxicillin and acetylsalicylic acid in influent wastewater. The precision for all ranged from 0.3 to 11%. The proposed method was successfully tested for the detection and quantification of different environmental water samples collected from Addis Ababa, Ethiopia. Trimethoprim, caffeine and albendazole concentrations of 7.8 (1.1), 3.2 (0.4) and 2.1 (0.1) µg/L were quantified in hospital wastewater, respectively. The concentration of norfloxacin was found to be below the limit of quantification in the same water. Trimethoprim and ciprofloxacin were also found in the sewage treatment plant influent sample at a concentration of 0.5 (0.02) and 0.3 (0.01) µg/L, respectively.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Cromatografía Líquida de Alta Presión , Monitoreo del Ambiente , Etiopía , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Agua , Contaminantes Químicos del Agua/análisis
19.
Chemosphere ; 266: 128975, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33228981

RESUMEN

Arsenic and selenium are both carcinogenic and their presence in fresh water has attracted the development of robust and accurate monitoring techniques. A new diffusive gradients in thin-films (DGT) sampler was developed and evaluated for the in situ measurements of arsenic and selenium. The binding layer was made from a mixture of sulphonated and phosphonated cross-linked polyethylenimine (SCPEI and PCPEI, respectively). The optimum ratio of a SCPEI and PCPEI resin mixture was determined. The DGT sampler was calibrated under laboratory conditions to determine the influence of sample turbulence, concentration and pH. The optimised DGT passive sampler was field deployed in a mine impacted dam for 12 days. Binding layer optimisation shows that the polymers had to be mixed in a specific ratio of 80% sulphonated and 20% phosphonated per 0.8 g of the resin mixture, in the loose polymer form. Embedding the resin mixture in agarose gel reduced the uptake of both arsenic and selenium dramatically. At sample pH 3.0 and 5.0, the DGT sampler did not show significant differences in uptake of the two elements during the 15 day deployment. The passive sampler had limited adsorption capacity and was found better suited for dilute solutions, with concentrations below 0.5 mg L-1 of the target metals. This effect was more pronounced when exposed to dam water which had competing cations. Cations may have reduced the capacity by binding to the PEI backbone via the large number of amine groups. Nonetheless, these cations did not show linear uptake.


Asunto(s)
Arsénico , Selenio , Contaminantes Químicos del Agua , Arsénico/análisis , Difusión , Monitoreo del Ambiente , Selenio/análisis , Contaminantes Químicos del Agua/análisis , Humedales
20.
Membranes (Basel) ; 10(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33137884

RESUMEN

In this article, a comprehensive review of applications of the hollow fibre-liquid phase microextraction (HF-LPME) for the isolation and pre-concentration of pharmaceuticals in water samples is presented. HF-LPME is simple, affordable, selective, and sensitive with high enrichment factors of up to 27,000-fold reported for pharmaceutical analysis. Both configurations (two- and three-phase extraction systems) of HF-LPME have been applied in the extraction of pharmaceuticals from water, with the three-phase system being more prominent. When compared to most common sample preparation techniques such as solid phase extraction, HF-LPME is a greener analytical chemistry process due to reduced solvent consumption, miniaturization, and the ability to automate. However, the automation comes at an added cost related to instrumental set-up, but a reduced cost is associated with lower reagent consumption as well as shortened overall workload and time. Currently, many researchers are investigating ionic liquids and deep eutectic solvents as environmentally friendly chemicals that could lead to full classification of HF-LPME as a green analytical procedure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...