Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Intervalo de año de publicación
1.
Methods Mol Biol ; 2827: 189-196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985271

RESUMEN

The aquatic monocot, Aponogeton ulvaceus Baker, is endemic to Madagascar and is a commercially valuable ornamental aquarium plant. Members of the genus Aponogeton contain a spectrum of phytochemicals associated with a broad range of biological activities. However, much remains to be known about this genus, and the A. ulvaceus population is declining due to anthropogenic activities and climate change. To address these challenges, adopting plant tissue culture technology will be a viable solution for the sustainable production of pest- and pathogen-free plants to meet the demands of the ornamental aquatic plant trade, for conservation and research purposes. A simple micropropagation protocol for A. ulvaceus is described here, starting with seeds to establish sterile stock plants, from which immature tubers were acquired as explants for indirect organogenesis.


Asunto(s)
Tubérculos de la Planta , Técnicas de Cultivo de Tejidos , Tubérculos de la Planta/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Semillas/crecimiento & desarrollo , Aclimatación
2.
Mol Biol Rep ; 51(1): 212, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273212

RESUMEN

BACKGROUND: Ganoderma boninense is a phytopathogen of oil palm, causing basal and upper stem rot diseases. METHODS: The genome sequence was used as a reference to study gene expression during growth in a starved carbon (C) and nitrogen (N) environment with minimal sugar and sawdust as initial energy sources. This study was conducted to mimic possible limitations of the C-N nutrient sources during the growth of G. boninense in oil palm plantations. RESULTS: Genome sequencing of an isolate collected from a palm tree in West Malaysia generated an assembly of 67.12 Mb encoding 19,851 predicted genes. Transcriptomic analysis from a time course experiment during growth in this starvation media identified differentially expressed genes (DEGs) that were found to be associated with 29 metabolic pathways. During the active growth phase, 26 DEGs were related to four pathways, including secondary metabolite biosynthesis, carbohydrate metabolism, glycan metabolism and mycotoxin biosynthesis. G. boninense genes involved in the carbohydrate metabolism pathway that contribute to the degradation of plant cell walls were up-regulated. Interestingly, several genes associated with the mycotoxin biosynthesis pathway were identified as playing a possible role in pathogen-host interaction. In addition, metabolomics analysis revealed six metabolites, maltose, xylobiose, glucooligosaccharide, glycylproline, dimethylfumaric acid and arabitol that were up-regulated on Day2 of the time course experiment. CONCLUSIONS: This study provides information on genes expressed by G. boninense in metabolic pathways that may play a role in the initial infection of the host.


Asunto(s)
Arecaceae , Ganoderma , Micotoxinas , Arecaceae/genética , Arecaceae/metabolismo , Enfermedades de las Plantas/genética , Perfilación de la Expresión Génica , Ganoderma/genética , Micotoxinas/metabolismo
3.
Nutr Cancer ; 73(3): 473-483, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32270712

RESUMEN

Boesenbergia rotunda (L.) Mansf. is an edible herb that is commonly used in the cuisine of several Asian countries. Studies have shown that it possesses high bioactivity against a variety of cancer cells. In this study, we investigated the cytotoxic activity of Boesenbergia rotunda rhizomes and some of its constituents on nasopharyngeal carcinoma cells (HK1). MTT assay results showed that the methanolic and hexane extracts of Boesenbergia rotunda decreased HK1 cell viability with IC50 values of 136 µg/ml and 66 µg/ml, respectively. Cardamonin, a constituent of Boesenbergia rotunda, exhibited the highest cytotoxic activity with an IC50 value of 27 µg/ml. Further studies on cardamonin revealed that it inhibited the migration of HK1 cells, caused G2/M-phase arrest and induced apoptosis. Apoptosis was induced via activating caspase-8 and caspase-3, but independent of caspase-9. This indicated that cardamonin induced extrinsic apoptosis. Western blot analysis further showed that cardamonin caused extrinsic apoptosis, as the expression levels of intrinsic apoptosis-related proteins (Bcl-XL, Bcl-2 and Bax), were not affected. Finally, JC-1 staining of HK1 cells revealed an increase in the mitochondrial membrane potential after treatment, further proving that cardamonin did not induce apoptosis via the intrinsic pathway. These results reflect cardamonin's potential as an anticancer agent.


Asunto(s)
Antineoplásicos , Neoplasias Nasofaríngeas , Zingiberaceae , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Chalconas , Humanos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico
4.
Physiol Mol Biol Plants ; 26(9): 1889-1896, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32943824

RESUMEN

Alpinia belongs to a large genus with many species found in Peninsular Malaysia. Several species of Alpinia exhibit important medicinal potential. However, progressive studies on the genus Alpinia were hampered by difficulties encountered in species identification. With the advancement achieved in genomic technology, more sensitive tools such as DNA barcoding were developed, which can be used for species identification. Internal Transcribe Spacer 2 (ITS2) is a DNA barcode which has proven to be a promising tool for species identification. The criterions of ITS2 efficacy namely universality and efficacy for species identification were tested on Alpinia species collected from Peninsular Malaysia. The results showed that a success rate of 96.97% was achieved using ITS2 for screening 11 species of Alpinia and an outgroup sample (Zingiber specatabile). Combined with 15 additional sequences from the Genbank for five Alpinia species, ITS2 demonstrated high species identification efficacy with 88.2% of species identified using phylogenetic and distance analysis. The analysis was further improved with the use of ITS2 secondary structure. The results of both criterions demonstrated the ability of ITS2 to successfully discriminate Alpinia species, which will help to improve species identification of Alpinia species in Peninsular Malaysia.

5.
Mol Biol Rep ; 47(6): 4183-4197, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32444976

RESUMEN

The Rab GTPase family plays a vital role in several plant physiological processes including fruit ripening. Fruit softening during ripening involves trafficking of cell wall polymers and enzymes between cellular compartments. Mango, an economically important fruit crop, is known for its delicious taste, exotic flavour and nutritional value. So far, there is a paucity of information on the mango Rab GTPase family. In this study, 23 genes encoding Rab proteins were identified in mango by a comprehensive in silico approach. Sequence alignment and similarity tree analysis with the model plant Arabidopsis as a reference enabled the bona fide assignment of the deduced mango proteins to classify into eight subfamilies. Expression analysis by RNA-Sequencing (RNA-Seq) showed that the Rab genes were differentially expressed in ripe and unripe mangoes suggesting the involvement of vesicle trafficking during ripening. Interaction analysis showed that the proteins involved in vesicle trafficking and cell wall softening were interconnected providing further evidence of the involvement of the Rab GTPases in fruit softening. Correlation analyses showed a significant relationship between the expression level of the RabA3 and RabA4 genes and fruit firmness at the unripe stage of the mango varieties suggesting that the differences in gene expression level might be associated with the contrasting firmness of these varieties. This study will not only provide new insights into the complexity of the ripening-regulated molecular mechanism but also facilitate the identification of potential Rab GTPases to address excessive fruit softening.


Asunto(s)
Mangifera/genética , Proteínas de Unión al GTP rab/análisis , Proteínas de Unión al GTP rab/genética , Secuencia de Aminoácidos/genética , Secuencia de Bases/genética , Frutas/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Mangifera/metabolismo , Proteínas de Plantas/genética , Alineación de Secuencia/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética
6.
Protein J ; 38(6): 704-715, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31552579

RESUMEN

Mango (Mangifera indica L.) is an economically important fruit. However, the marketability of mango is affected by the perishable nature and short shelf-life of the fruit. Therefore, a better understanding of the mango ripening process is of great importance towards extending its postharvest shelf life. Proteomics is a powerful tool that can be used to elucidate the complex ripening process at the cellular and molecular levels. This study utilized 2-dimensional gel electrophoresis (2D-GE) coupled with MALDI-TOF/TOF to identify differentially abundant proteins during the ripening process of the two varieties of tropical mango, Mangifera indica cv. 'Chokanan' and Mangifera indica cv 'Golden Phoenix'. The comparative analysis between the ripe and unripe stages of mango fruit mesocarp revealed that the differentially abundant proteins identified could be grouped into the three categories namely, ethylene synthesis and aromatic volatiles, cell wall degradation and stress-response proteins. There was an additional category for differential proteins identified from the 'Chokanan' variety namely, energy and carbohydrate metabolism. However, of all the differential proteins identified, only methionine gamma-lyase was found in both 'Chokanan' and 'Golden Phoenix' varieties. Six differential proteins were selected from each variety for validation by analysing their respective transcript expression using reverse transcription-quantitative PCR (RT-qPCR). The results revealed that two genes namely, glutathione S-transferase (GST) and alpha-1,4 glucan phosphorylase (AGP) were found to express in concordant with protein abundant. The findings will provide an insight into the fruit ripening process of different varieties of mango fruits, which is important for postharvest management.


Asunto(s)
Proteínas de Frutas/metabolismo , Frutas/metabolismo , Mangifera/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteómica/métodos
7.
Biotechnol Lett ; 40(11-12): 1541-1550, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30203158

RESUMEN

The first and most crucial step of all molecular techniques is to isolate high quality and intact nucleic acids. However, DNA and RNA isolation from fungal samples are usually difficult due to the cell walls that are relatively unsusceptible to lysis and often resistant to traditional extraction procedures. Although there are many extraction protocols for Ganoderma species, different extraction protocols have been applied to different species to obtain high yields of good quality nucleic acids, especially for genome and transcriptome sequencing. Ganoderma species, mainly G. boninense causes the basal stem rot disease, a devastating disease that plagues the oil palm industry. Here, we describe modified DNA extraction protocols for G. boninense, G. miniatocinctum and G. tornatum, and an RNA extraction protocol for G. boninense. The modified salting out DNA extraction protocol is suitable for G. boninense and G. miniatocinctum while the modified high salt and low pH protocol is suitable for G. tornatum. The modified DNA and RNA extraction protocols were able to produce high quality genomic DNA and total RNA of ~ 140 to 160 µg/g and ~ 80 µg/g of mycelia respectively, for Single Molecule Real Time (PacBio Sequel® System) and Illumina sequencing. These protocols will benefit those studying the oil palm pathogens at nucleotide level.


Asunto(s)
Fraccionamiento Químico/métodos , ADN de Hongos/aislamiento & purificación , Ganoderma/genética , ARN de Hongos/aislamiento & purificación , ADN de Hongos/análisis , ADN de Hongos/química , Ganoderma/química , Micología/métodos , ARN de Hongos/análisis , ARN de Hongos/química
8.
Electron. j. biotechnol ; 34: 51-58, july. 2018. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1046711

RESUMEN

Background: Capsicum is a genus of an important spice crop that belongs to the chili lineage. However, many Capsicum species (family Solanaceae) are known to be recalcitrant to genetic transformation and in vitro regeneration, thus hampering the effort in using Capsicum species for detailed biological investigation. In this study, we have developed an optimized protocol for the direct transformation of Capsicum frutescens L. cv. Hot Lava using a biolistic particle delivery system. In addition, a procedure for in vitro whole plant regeneration from the hypocotyl explants of C. frutescens was established. Results: In this study on the biolistic system, explant target distance, bombardment helium (He) pressure, and the size of the microcarrier were the key parameters to be investigated. The optimized parameters based on the screening of GFP expression were determined to have a target distance of 6 cm, helium pressure of 1350 psi, and gold particle (microcarrier) size of 1.6 µm. The greatest number of shoots was obtained from hypocotyls as explants using Murashige and Skoog medium supplemented with 5.0-mg/L 6-benzylaminopurine and 0.1-mg/L 1-naphthaleneacetic acid. On an average, five shoots per explant were formed, and of them, one shoot managed to form the root and developed into a whole plant. Conclusions: We obtained an optimized protocol for the biolistic transformation of chili and in vitro regeneration of chili plantlets. The establishment of the protocols will provide a platform for molecular breeding and biological studies of chili plants.


Asunto(s)
Capsicum/crecimiento & desarrollo , Regeneración , Transformación Genética , Técnicas In Vitro , Capsicum/genética , Reacción en Cadena de la Polimerasa , Biolística , Proteínas Fluorescentes Verdes , Técnicas de Cultivo de Tejidos , Ingeniería Metabólica
9.
Biotechnol Genet Eng Rev ; 34(2): 181-197, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29902948

RESUMEN

Fruit ripening is a complex developmental process that involves the synthesis and modification of the cell wall leading up to the formation of an edible fruit. During the period of fruit ripening, new cell wall polymers and enzymes are synthesized and trafficked to the apoplast. Vesicle trafficking has been shown to play a key role in facilitating the synthesis and modification of cell walls in fruits. Through reverse genetics and gene expression studies, the importance of Rab guanosine triphosphatases (GTPases) as integral regulators of vesicle trafficking to the cell wall has been revealed. It has been a decade since a rich literature on the involvement of Rab GTPase in ripening was published. Therefore, this review sets out to summarize the progress in studies on the pivotal roles of Rab GTPases in fruit development and sheds light on new approaches that could be adopted in the fields of postharvest biology and fruit-ripening research.


Asunto(s)
Frutas/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Proteínas de Unión al GTP rab/metabolismo , Pared Celular/metabolismo , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Genética Inversa
10.
Proteomes ; 6(2)2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29734680

RESUMEN

In many tropical countries with agriculture as the mainstay of the economy, tropical crops are commonly cultivated at the plantation scale. The successful establishment of crop plantations depends on the availability of a large quantity of elite seedling plants. Many plantation companies establish plant tissue culture laboratories to supply planting materials for their plantations and one of the most common applications of plant tissue culture is the mass propagation of true-to-type elite seedlings. However, problems encountered in tissue culture technology prevent its applications being widely adopted. Proteomics can be a powerful tool for use in the analysis of cultures, and to understand the biological processes that takes place at the cellular and molecular levels in order to address these problems. This mini review presents the tissue culture technologies commonly used in the propagation of tropical crops. It provides an outline of some the genes and proteins isolated that are associated with somatic embryogenesis and the use of proteomic technology in analysing tissue culture samples and processes in tropical crops.

11.
Electrophoresis ; 38(8): 1147-1153, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28198080

RESUMEN

Oil palm is one of the most productive oil bearing crops grown in Southeast Asia. Due to the dwindling availability of agricultural land and increasing demand for high yielding oil palm seedlings, clonal propagation is vital to the oil palm industry. Most commonly, leaf explants are used for in vitro micropropagation of oil palm and to optimize this process it is important to unravel the physiological and molecular mechanisms underlying somatic embryo production from leaves. In this study, a proteomic approach was used to determine protein abundance of mature oil palm leaves. To do this, leaf proteins were extracted using TCA/acetone precipitation protocol and separated by 2DE. A total of 191 protein spots were observed on the 2D gels and 67 of the most abundant protein spots that were consistently observed were selected for further analysis with 35 successfully identified using MALDI TOF/TOF MS. The majority of proteins were classified as being involved in photosynthesis, metabolism, cellular biogenesis, stress response, and transport. This study provides the first proteomic assessment of oil palm leaves in this important oil crop and demonstrates the successful identification of selected proteins spots using the Malaysian Palm Oil Board (MPOB) Elaeis guineensis EST and NCBI-protein databases. The MS data have been deposited in the ProteomeXchange Consortium database with the data set identifier PXD001307.


Asunto(s)
Arecaceae/química , Hojas de la Planta/química , Proteínas de Plantas/análisis , Proteómica , Electroforesis en Gel Bidimensional , Espectrometría de Masas , Aceites de Plantas
12.
Mol Biotechnol ; 59(1): 1-8, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27826796

RESUMEN

Production of vanillin by bioengineering has gained popularity due to consumer demand toward vanillin produced by biological systems. Natural vanillin from vanilla beans is very expensive to produce compared to its synthetic counterpart. Current bioengineering works mainly involve microbial biotechnology. Therefore, alternative means to the current approaches are constantly being explored. This work describes the use of vanillin synthase (VpVAN), to bioconvert ferulic acid to vanillin in a plant system. The VpVAN enzyme had been shown to directly convert ferulic acid and its glucoside into vanillin and its glucoside, respectively. As the ferulic acid precursor and vanillin were found to be the intermediates in the phenylpropanoid biosynthetic pathway of Capsicum species, this work serves as a proof-of-concept for vanillin production using Capsicum frutescens (C. frutescens or hot chili pepper). The cells of C. frutescens were genetically transformed with a codon optimized VpVAN gene via biolistics. Transformed explants were selected and regenerated into callus. Successful integration of the gene cassette into the plant genome was confirmed by polymerase chain reaction. High-performance liquid chromatography was used to quantify the phenolic compounds detected in the callus tissues. The vanillin content of transformed calli was 0.057% compared to 0.0003% in untransformed calli.


Asunto(s)
Benzaldehídos/metabolismo , Biolística/métodos , Capsicum/crecimiento & desarrollo , Hidroliasas/metabolismo , Bioingeniería/métodos , Vías Biosintéticas , Capsicum/genética , Ácidos Cumáricos/metabolismo , Hidroliasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
13.
Springerplus ; 5(1): 1657, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27730019

RESUMEN

Aponogeton ulvaceus Baker (Aponogetonaceae) is a commercially important ornamental aquatic plant species with traditional medicinal uses. Due to the low survival rate of seedlings, propagation by conventional means has been met with many difficulties. In this study, botanical aspects of A. ulvaceus were examined with regards to the morphology, anatomy and physiology of the plant and an efficient protocol for its in vitro propagation using immature tuber explants has been established. The existence of glandular trichomes on the leaves was discovered and the occurrence of circumnutation in A. ulvaceus has been demonstrated. Immature tuber segments with meristems were cultured on MS medium supplemented with various combinations (0, 1, 2, and 3 mg/L) of BAP and NAA for callus induction. The highest percentage of callus production (100 %) was obtained in two different treatments: 1 mg/L BAP and 3 mg/L NAA, and 2 mg/L BAP and 3 mg/L NAA. For shoot and root organogenesis, the combination of 1 mg/L BAP and 1 mg/L NAA was shown to be significant for A. ulvaceus regeneration when compared to control, which yields a mean shoot and root number of 22.50 and 29.50 respectively. The current protocol is the first reported successful establishment of in vitro clonal propagation of A. ulvaceus.

14.
J Proteomics ; 143: 334-345, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27130535

RESUMEN

UNLABELLED: Oil palm tissue culture is one way to produce superior oil palm planting materials. However, the low rate of embryogenesis is a major hindrance for the adoption of this technology in oil palm tissue culture laboratories. In this study, we use proteomic technologies to compare differential protein profiles in leaves from palms of high and low proliferation rates in tissue culture in order to understand the underlying biological mechanism for the low level of embryogenesis. Two protein extraction methods, namely trichloroacetic acid/acetone precipitation and polyethylene glycol fractionation were used to produce total proteins and fractionated protein extracts respectively, with the aim of improving the resolution of protein species using two-dimensional gel electrophoresis. A total of 40 distinct differential abundant protein spots were selected from leaf samples collected from palms with proven high and low proliferation rates. The variant proteins were subsequently identified using mass spectrometric analysis. Twelve prominent protein spots were then characterised using real-time polymerase chain reaction to compare the mRNA expression and protein abundant profiles. Three proteins, namely triosephosphate isomerase, l-ascorbate peroxidase, and superoxide dismutase were identified to be potential biomarker candidates at both the protein abundant and mRNA expression levels. BIOLOGICAL SIGNIFICANCE: In this study, proteomic analysis was used to identify abundant proteins from total protein extracts. PEG fractionation was used to reveal lower abundant proteins from both high and low proliferation embryogenic lines of oil palm samples in tissue culture. A total of 40 protein spots were found to be significant in abundance and the mRNA levels of 12 of these were assessed using real time PCR. Three proteins namely, triosephosphate isomerase, l-ascorbate peroxidase and superoxide dismutase were found to be concordant in their mRNA expression and protein abundance. Triosephosphate isomerase is a key enzyme in glycolysis. Both l-ascorbate peroxidase and superoxide dismutase play a role in anti-oxidative scavenging defense systems. These proteins have potential for use as biomarkers to screen for high and low embryogenic oil palm samples.


Asunto(s)
Arecaceae/química , Proliferación Celular , Hojas de la Planta/química , Proteínas de Plantas/análisis , Proteómica/métodos , ARN de Planta/análisis , Arecaceae/genética , Arecaceae/crecimiento & desarrollo , Ascorbato Peroxidasas/análisis , Ascorbato Peroxidasas/genética , Biomarcadores , Superóxido Dismutasa/análisis , Superóxido Dismutasa/genética , Triosa-Fosfato Isomerasa/análisis , Triosa-Fosfato Isomerasa/genética
15.
J Proteome Res ; 14(7): 2723-44, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26035454

RESUMEN

In the rapidly growing economies of Asia and Oceania, food security has become a primary concern. With the rising population, growing more food at affordable prices is becoming even more important. In addition, the predicted climate change will lead to drastic changes in global surface temperature and changes in rainfall patterns that in turn will pose a serious threat to plant vegetation worldwide. As a result, understanding how plants will survive in a changing climate will be increasingly important. Such challenges require integrated approaches to increase agricultural production and cope with environmental threats. Proteomics can play a role in unraveling the underlying mechanisms for food production to address the growing demand for food. In this review, the current status of food crop proteomics is discussed, especially in regard to the Asia and Oceania regions. Furthermore, the future perspective in relation to proteomic techniques for the important food crops is highlighted.


Asunto(s)
Productos Agrícolas/metabolismo , Proteínas de Plantas/metabolismo , Proteómica , Asia , Predicción , Oceanía
16.
Mol Biotechnol ; 48(2): 156-64, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21153717

RESUMEN

In this study, we report the molecular characterization of clone Eg707 isolated from cell suspension culture of the oil palm. The deduced polypeptide of clone Eg707 is highly similar to an unknown protein from Arabidopsis thaliana. The presence of an Ald-Xan-dh-C2 superfamily domain in the deduced protein sequence suggested that Eg707 protein might be involved in abscisic acid biosynthesis. Eg707 might be present as a single copy gene in the oil palm genome. This gene is highly expressed in tissue cultured materials compared to vegetative and reproductive tissues, suggesting a role of this gene during oil palm somatic embryogenesis or at the early stages of embryo development. Expression analysis of Eg707 by RNA in situ hybridization showed that Eg707 transcripts were present throughout somatic embryo development starting from proembryo formation at the embryogenic callus stages till the maturing embryo stages. Since proembryo formation within the embryogenic callus is one of the first key factors in oil palm somatic embryo development, it is suggested that Eg707 could be used as a reliable molecular marker for detecting early stage of oil palm somatic embryogenesis.


Asunto(s)
Arecaceae/embriología , Arecaceae/metabolismo , Ácido Abscísico/metabolismo , Arecaceae/genética , Hibridación in Situ , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...