Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Structure ; 32(9): 1348-1357.e4, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38889720

RESUMEN

Disulfide-rich peptides such as defensins play diverse roles in immunity and ion channel modulation, as well as constituting the bioactive components of many animal venoms. We investigated the structure and bioactivity of U-RDTX-Pp19, a peptide previously discovered in venom of the assassin bug Pristhesancus plagipennis. Recombinant Pp19 (rPp19) was found to possess insecticidal activity when injected into Drosophila melanogaster. A bioinformatic search revealed that domains homologous to Pp19 are produced by assassin bugs and diverse other arthropods. rPp19 co-eluted with native Pp19 isolated from P. plagipennis, which we found is more abundant in hemolymph than venom. We solved the three-dimensional structure of rPp19 using 2D 1H NMR spectroscopy, finding that it adopts a disulfide-stabilized structure highly similar to known trans-defensins, with the same cystine connectivity as human α-defensin (I-VI, II-IV, and III-V). The structure of Pp19 is unique among reported structures of arthropod peptides.


Asunto(s)
Secuencia de Aminoácidos , Venenos de Artrópodos , Defensinas , Drosophila melanogaster , Insecticidas , Animales , Insecticidas/química , Insecticidas/farmacología , Drosophila melanogaster/metabolismo , Defensinas/química , Defensinas/farmacología , Venenos de Artrópodos/química , Venenos de Artrópodos/metabolismo , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Humanos , Heterópteros/química , Heterópteros/metabolismo
2.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117223

RESUMEN

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Asunto(s)
Toxinas Biológicas , Urtica dioica , Australia , Dolor , Péptidos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo
3.
Commun Chem ; 6(1): 48, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871076

RESUMEN

Macrocyclisation of proteins and peptides results in a remarkable increase in structural stability, making cyclic peptides and proteins of great interest in drug discovery-either directly as drug leads or as in the case of cyclised nanodiscs (cNDs), as tools for studies of trans-membrane receptors and membrane-active peptides. Various biological methods have been developed that are capable of yielding head-to-tail macrocyclised products. Recent advances in enzyme-catalysed macrocyclisation include discovery of new enzymes or design of new engineered enzymes. Here, we describe the engineering of a self-cyclising "autocyclase" protein, capable of performing a controllable unimolecular reaction for generation of cyclic biomolecules in high yield. We characterise the self-cyclisation reaction mechanism, and demonstrate how the unimolecular reaction path provides alternative avenues for addressing existing challenges in enzymatic cyclisation. We use the method to produce several notable cyclic peptides and proteins, demonstrating how autocyclases offer a simple, alternative way to access a vast diversity of macrocyclic biomolecules.

4.
J Med Chem ; 66(4): 3045-3057, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36749163

RESUMEN

Peptides targeting disease-relevant protein-protein interactions are an attractive class of therapeutics covering the otherwise undruggable space between small molecules and therapeutic proteins. However, peptides generally suffer from poor metabolic stability and low membrane permeability. Hence, peptide cyclization has become a valuable approach to develop linear peptide motifs into metabolically stable and potentially cell-permeable cyclic leads. Furthermore, cyclization of side chains, also known as "stapling", can stabilize particular secondary peptide structures. Here, we demonstrate that a comprehensive examination of cyclization strategies in terms of position, chemistry, and length is a prerequisite for the selection of optimal cyclic peptide scaffolds. Our systematic approach identifies cyclic APP dodecamer peptides targeting the phosphotyrosine binding domain of Mint2 with substantially improved affinity. We show that especially all-hydrocarbon stapling provides improved metabolic stability, a significantly stabilized secondary structure and membrane permeability.


Asunto(s)
Precursor de Proteína beta-Amiloide , Péptidos Cíclicos , Ciclización , Péptidos Cíclicos/química , Estructura Secundaria de Proteína , Precursor de Proteína beta-Amiloide/química , Unión Proteica , Fosfotirosina/química
5.
Nat Commun ; 14(1): 1036, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823422

RESUMEN

Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Venenos de Escorpión , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Rianodina/farmacología , Secuencia de Aminoácidos , Péptidos/química , Venenos de Escorpión/farmacología , Venenos de Escorpión/química
6.
Br J Pharmacol ; 179(20): 4878-4896, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35818835

RESUMEN

BACKGROUND AND PURPOSE: Over past decades, targeted therapies and immunotherapy have improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF-melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH: We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS: Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. A truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumours in xenograft melanoma mice and zebrafish. CONCLUSION AND IMPLICATIONS: We unravel the intrinsic anti-tumoural properties of a tachykinin peptide. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in vitro and prevents tumour progression in vivo, providing a foundation for a therapy against melanoma.


Asunto(s)
Antineoplásicos , Melanoma , Adenosina Trifosfato , Animales , Antineoplásicos/farmacología , Calcio , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones , Mutación , Octopodiformes/química , Péptidos/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/uso terapéutico , ARN Mensajero , Especies Reactivas de Oxígeno , Taquicininas/genética , Taquicininas/uso terapéutico , Pez Cebra/genética
7.
Biomedicines ; 10(5)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35625803

RESUMEN

Inhibition of T-type calcium channels (CaV3) prevents development of diseases related to cardiovascular and nerve systems. Further, knockout animal studies have revealed that some diseases are mediated by specific subtypes of CaV3. However, subtype-specific CaV3 inhibitors for therapeutic purposes or for studying the physiological roles of CaV3 subtypes are missing. To bridge this gap, we employed our spider venom library and uncovered that Avicularia spec. ("Amazonas Purple", Peru) tarantula venom inhibited specific T-type CaV channel subtypes. By using chromatographic and mass-spectrometric techniques, we isolated and sequenced the active toxin ω-Avsp1a, a C-terminally amidated 36 residue peptide with a molecular weight of 4224.91 Da, which comprised the major peak in the venom. Both native (4.1 µM) and synthetic ω-Avsp1a (10 µM) inhibited 90% of CaV3.1 and CaV3.3, but only 25% of CaV3.2 currents. In order to investigate the toxin binding site, we generated a range of chimeric channels from the less sensitive CaV3.2 and more sensitive CaV3.3. Our results suggest that domain-1 of CaV3.3 is important for the inhibitory effect of ω-Avsp1a on T-type calcium channels. Further studies revealed that a leucine of T-type calcium channels is crucial for the inhibitory effect of ω-Avsp1a.

8.
ACS Chem Neurosci ; 13(8): 1245-1250, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35357806

RESUMEN

α-Conotoxins that target muscle nicotinic acetylcholine receptors (nAChRs) commonly fall into two structural classes, frameworks I and II containing two and three disulfide bonds, respectively. Conotoxin SII is the sole member of the cysteine-rich framework II with ill-defined interactions at the nAChRs. Following directed synthesis of α-SII, NMR analysis revealed a well-defined structure containing a 310-helix frequently employed by framework I α-conotoxins; α-SII acted at the muscle nAChR with half-maximal inhibitory concentrations (IC50) of 120 nM (adult) and 370 nM (fetal) though weakly at neuronal nAChRs. Truncation of α-SII to a two disulfide bond amidated peptide with framework I disulfide connectivity led to similar activity. Surprisingly, the more constrained α-SII was less stable under mild reducing conditions and displayed a unique docking mode at the nAChR.


Asunto(s)
Conotoxinas , Receptores Nicotínicos , Secuencia de Aminoácidos , Conotoxinas/farmacología , Cisteína , Disulfuros , Músculos/metabolismo , Antagonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131940

RESUMEN

Venoms are excellent model systems for studying evolutionary processes associated with predator-prey interactions. Here, we present the discovery of a peptide toxin, MIITX2-Mg1a, which is a major component of the venom of the Australian giant red bull ant Myrmecia gulosa and has evolved to mimic, both structurally and functionally, vertebrate epidermal growth factor (EGF) peptide hormones. We show that Mg1a is a potent agonist of the mammalian EGF receptor ErbB1, and that intraplantar injection in mice causes long-lasting hypersensitivity of the injected paw. These data reveal a previously undescribed venom mode of action, highlight a role for ErbB receptors in mammalian pain signaling, and provide an example of molecular mimicry driven by defensive selection pressure.


Asunto(s)
Venenos de Hormiga/química , Hormigas/fisiología , Hipersensibilidad a las Drogas , Factor de Crecimiento Epidérmico/química , Toxinas Biológicas/química , Secuencia de Aminoácidos , Animales , Mordeduras y Picaduras de Insectos , Ratones , Imitación Molecular
10.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074873

RESUMEN

The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.


Asunto(s)
Nociceptores/efectos de los fármacos , Papio/metabolismo , Péptidos/farmacología , Venenos de Araña/farmacología , Arañas/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Canales Iónicos/metabolismo , Ratones , Dolor/tratamiento farmacológico , Tetrodotoxina/farmacología
11.
Toxicon ; 202: 1-12, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34547307

RESUMEN

Endoparasitoid wasps use complex biochemical arsenals to suppress the normal humoral and cellular immune responses of their hosts in order to transform them into a suitable environment for development of their eggs and larvae. Venom injected during oviposition is a key component of this arsenal, but the functions of individual venom toxins are still poorly understood. Furthermore, there has been little investigation of the potential biotechnological use of these venom toxins, for example for control of agricultural pests. The endoparasitoid Cotesia flavipes (Hymenoptera: Braconidae) is a biocontrol agent reared in biofactories and released extensively in Brazil to control the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). The objectives of this work were to reveal venom components produced by C. flavipes and explore the function of a major venom peptide, Cf4. Using a combined proteomic/transcriptomic approach, we identified 38 putative venom toxins including both linear and disulfide-rich peptides, hydrolases, protease inhibitors, apolipophorins, lipid-binding proteins, and proteins of the odorant binding families. Because of its high abundance in the venom, we selected Cf4, a 33-residue peptide with three disulfide bonds, for synthesis and further characterization. We found that synthetic Cf4 reduced the capacity of D. saccharalis hemocytes to encapsulate foreign bodies without any effect on phenoloxidase activity, consistent with a role in disruption of the cellular host immune response. Feeding leaves coated with Cf4 to neonate D. saccharalis resulted in increased mortality and significantly reduced feeding compared to caterpillars fed untreated leaves, indicating that Cf4 is a potential candidate for insect pest control through ingestion. This study adds to our knowledge of endoparasitoid wasp venoms composition, host regulation mechanisms and their biotechnological potential for pest management.


Asunto(s)
Mariposas Nocturnas , Avispas , Animales , Femenino , Interacciones Huésped-Parásitos , Humanos , Recién Nacido , Péptidos , Proteómica , Venenos de Avispas
12.
Proc Natl Acad Sci U S A ; 117(21): 11399-11408, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32398368

RESUMEN

Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene.


Asunto(s)
Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Venenos de Araña/química , Animales , Proteínas de Artrópodos/análisis , Australia , Dípteros/efectos de los fármacos , Disulfuros , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Espectrometría de Masas , Péptidos/análisis , Péptidos/química , Péptidos/genética , Filogenia , Conformación Proteica , Proteómica/métodos , Venenos de Araña/genética , Venenos de Araña/toxicidad , Arañas/genética
13.
Biochem Pharmacol ; 181: 113991, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32335140

RESUMEN

Dravet syndrome (DS) is a catastrophic epileptic encephalopathy characterised by childhood-onset polymorphic seizures, multiple neuropsychiatric comorbidities, and increased risk of sudden death. Heterozygous loss-of-function mutations in one allele of SCN1A, the gene encoding the voltage-gated sodium channel 1.1 (NaV1.1), lead to DS. NaV1.1 is primarily found in the axon initial segment of fast-spiking GABAergic inhibitory interneurons in the brain, and the principle mechanism proposed to underlie seizure genesis in DS is loss of inhibitory input due to dysfunctional firing of GABAergic interneurons. We hypothesised that DS symptoms could be ameliorated by a drug that activates the reduced population of functional NaV1.1 channels in DS interneurons. We recently identified two homologous disulfide-rich spider-venom peptides (Hm1a and Hm1b) that selectively potentiate NaV1.1, and showed that selective activation of NaV1.1 by Hm1a restores the function of inhibitory interneurons in a mouse model of DS. Here we produced recombinant Hm1b (rHm1b) using an E. coli periplasmic expression system, and examined its selectivity against a panel of human NaV subtypes using whole-cell patch-clamp recordings. rHm1b is a potent and highly selective agonist of NaV1.1 and NaV1.3 (EC50 ~12 nM for both). rHm1b is a gating modifier that shifts the voltage dependence of channel activation and inactivation to hyperpolarised and depolarised potentials respectively, presumably by interacting with the channel's voltage-sensor domains. Like Hm1a, the structure of rHm1b determined by using NMR revealed a classical inhibitor cystine knot (ICK) motif. However, we show that rHm1b is an order of magnitude more stable than Hm1a in human cerebrospinal fluid. Overall, our data suggest that rHm1b is an exciting lead for a precision therapeutic targeted against DS.


Asunto(s)
Epilepsias Mioclónicas/tratamiento farmacológico , Interneuronas/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Péptidos/farmacología , Agonistas de los Canales de Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/metabolismo , Células HEK293 , Humanos , Interneuronas/metabolismo , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Técnicas de Placa-Clamp , Péptidos/química , Péptidos/genética , Homología de Secuencia de Aminoácido , Agonistas de los Canales de Sodio/química , Venenos de Araña/metabolismo
14.
ACS Pharmacol Transl Sci ; 3(1): 119-134, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32259093

RESUMEN

Voltage-gated sodium (NaV) channels play a fundamental role in normal neurological function, especially via the initiation and propagation of action potentials. The NaV1.1 subtype is found in inhibitory interneurons of the brain and it is essential for maintaining a balance between excitation and inhibition in neuronal networks. Heterozygous loss-of-function mutations of SCN1A, the gene encoding NaV1.1, underlie Dravet syndrome (DS), a severe pediatric epilepsy. We recently demonstrated that selective inhibition of NaV1.1 inactivation prevents seizures and premature death in a mouse model of DS. Thus, selective modulators of NaV1.1 might be useful therapeutics for treatment of DS as they target the underlying molecular deficit. Numerous scorpion-venom peptides have been shown to modulate the activity of NaV channels, but little is known about their activity at NaV1.1. Here we report the isolation, sequence, three-dimensional structure, recombinant production, and functional characterization of two peptidic modulators of NaV1.1 from venom of the buthid scorpion Hottentotta jayakari. These peptides, Hj1a and Hj2a, are potent agonists of NaV1.1 (EC50 of 17 and 32 nM, respectively), and they present dual α/ß activity by modifying both the activation and inactivation properties of the channel. NMR studies of rHj1a indicate that it adopts a cystine-stabilized αß fold similar to known scorpion toxins. Although Hj1a and Hj2a have only limited selectivity for NaV1.1, their unusual dual mode of action provides an alternative approach to the development of selective NaV1.1 modulators for the treatment of DS.

15.
Proteins ; 88(3): 485-502, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31589791

RESUMEN

The cross-strand disulfides (CSDs) found in ß-hairpin antimicrobial peptides (ß-AMPs) show a unique disulfide geometry that is characterized by unusual torsion angles and a short Cα-Cα distance. While the sequence and disulfide bond connectivity of disulfide-rich peptides is well studied, much less is known about the disulfide geometry found in CSDs and their role in the stability of ß-AMPs. To address this, we solved the nuclear magnetic resonance (NMR) structure of the ß-AMP gomesin (Gm) at 278, 298, and 310 K, examined the disulfide bond geometry of over 800 disulfide-rich peptides, and carried out extensive molecular dynamics (MD) simulation of the peptides Gm and protegrin. The NMR data suggests Cα-Cα distances characteristic for CSDs are independent of temperature. Analysis of disulfide-rich peptides from the Protein Data Bank revealed that right-handed and left-handed rotamers are equally likely in CSDs. The previously reported preference for right-handed rotamers was likely biased by restricting the analysis to peptides and proteins solved using X-ray crystallography. Furthermore, data from MD simulations showed that the short Cα-Cα distance is critical for the stability of these peptides. The unique disulfide geometry of CSDs poses a challenge to biomolecular force fields and to retain the stability of ß-hairpin fold over long simulation times, restraints on the torsion angles might be required.


Asunto(s)
Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Disulfuros/química , Animales , Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Disulfuros/metabolismo , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Arañas/química , Estereoisomerismo , Temperatura , Termodinámica
16.
Biochem Pharmacol ; 174: 113782, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31881193

RESUMEN

Urotoxin (α-KTx 6), a peptide from venom of the Australian scorpion Urodacus yaschenkoi, is the most potent inhibitor of Kv1.2 described to date (IC50 = 160 pM). The native peptide also inhibits Kv1.1, Kv1.3 and KCa3.1 with nanomolar affinity but its low abundance in venom precluded further studies of its actions. Here we produced recombinant Urotoxin (rUro) and characterized the molecular determinants of Kv1 channel inhibition. The 3D structure of rUro determined using NMR spectroscopy revealed a canonical cysteine-stabilised α/ß (CSα/ß) fold. Functional assessment of rUro using patch-clamp electrophysiology revealed the importance of C-terminal amidation for potency against Kv1.1-1.3 and Kv1.5. Neutralization of the putative pore-blocking K25 residue in rUro by mutation to Ala resulted in a major decrease in rUro potency against all Kv channels tested, without perturbing the toxin's structure. Reciprocal mutations in the pore of Uro-sensitive Kv1.2 and Uro-resistant Kv1.5 channels revealed a direct interaction between Urotoxin and the Kv channel pore. Our experimental work supports postulating a mechanism of action in which occlusion of the permeation pathway by the K25 residue in Urotoxin is the basis of its Kv1 inhibitory activity. Docking analysis was consistent with occlusion of the pore by K25 and the requirement of a small, non-charged amino acid in the Kv1 channel vestibule to facilitate toxin-channel interactions. Finally, computational studies revealed key interactions between the amidated C-terminus of Urotoxin and a conserved Asp residue in the turret of Kv1 channels, offering a potential rationale for potency differences between native and recombinant Urotoxin.


Asunto(s)
Canal de Potasio Kv.1.1/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Venenos de Escorpión/química , Animales , Cromatografía Líquida de Alta Presión , Escherichia coli/genética , Humanos , Canal de Potasio Kv.1.1/genética , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Conformación Proteica , Escorpiones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Linfocitos T/metabolismo
17.
Nat Commun ; 10(1): 1528, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948714

RESUMEN

Phox homology (PX) domains are membrane interacting domains that bind to phosphatidylinositol phospholipids or phosphoinositides, markers of organelle identity in the endocytic system. Although many PX domains bind the canonical endosome-enriched lipid PtdIns3P, others interact with alternative phosphoinositides, and a precise understanding of how these specificities arise has remained elusive. Here we systematically screen all human PX domains for their phospholipid preferences using liposome binding assays, biolayer interferometry and isothermal titration calorimetry. These analyses define four distinct classes of human PX domains that either bind specifically to PtdIns3P, non-specifically to various di- and tri-phosphorylated phosphoinositides, bind both PtdIns3P and other phosphoinositides, or associate with none of the lipids tested. A comprehensive evaluation of PX domain structures reveals two distinct binding sites that explain these specificities, providing a basis for defining and predicting the functional membrane interactions of the entire PX domain protein family.


Asunto(s)
Fosfatidilinositoles/química , Sitios de Unión , Calorimetría , Humanos , Interferometría , Modelos Moleculares , Fosfatidilinositoles/metabolismo , Dominios Proteicos , Análisis de Secuencia de Proteína , Nexinas de Clasificación/química , Nexinas de Clasificación/metabolismo
18.
Biochem Pharmacol ; 158: 60-72, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30149017

RESUMEN

Recently, we and other groups revealed that gain-of-function mutations in the human ether à go-go voltage-gated potassium channel hEAG1 (Kv10.1) lead to developmental disorders with associated infantile-onset epilepsy. However, the physiological role of hEAG1 in the central nervous system remains elusive. Potent and selective antagonists of hEAG1 are therefore much sought after, both as pharmacological tools for studying the (patho)physiological functions of this enigmatic channel and as potential leads for development of anti-epileptic drugs. Since animal venoms are a rich source of potent ion channel modifiers that have been finely tuned by millions of year of evolution, we screened 108 arachnid venoms for hEAG1 inhibitors using electrophysiology. Two hit peptides (Aa1a and Ap1a) were isolated, sequenced, and chemically synthesised for structure-function studies. Both of these hEAG1 inhibitors are C-terminally amidated peptides containing an inhibitor cystine knot motif, which provides them with exceptional stability in both plasma and cerebrospinal fluid. Aa1a and Ap1a are the most potent peptidic inhibitors of hEAG1 reported to date, and they present a novel mode of action by targeting both the activation and inactivation gating of the channel. These peptides should be useful pharmacological tools for probing hEAG1 function as well as informative leads for the development of novel anti-epileptic drugs.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Venenos de Araña/administración & dosificación , Secuencia de Aminoácidos , Animales , Anticonvulsivantes/química , Anticonvulsivantes/aislamiento & purificación , Células CHO , Cricetulus , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Estructura Secundaria de Proteína , Venenos de Araña/química , Venenos de Araña/genética , Venenos de Araña/aislamiento & purificación
19.
Cell Mol Life Sci ; 75(24): 4511-4524, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30109357

RESUMEN

Sea anemone venoms have long been recognized as a rich source of peptides with interesting pharmacological and structural properties, but they still contain many uncharacterized bioactive compounds. Here we report the discovery, three-dimensional structure, activity, tissue localization, and putative function of a novel sea anemone peptide toxin that constitutes a new, sixth type of voltage-gated potassium channel (KV) toxin from sea anemones. Comprised of just 17 residues, κ-actitoxin-Ate1a (Ate1a) is the shortest sea anemone toxin reported to date, and it adopts a novel three-dimensional structure that we have named the Proline-Hinged Asymmetric ß-hairpin (PHAB) fold. Mass spectrometry imaging and bioassays suggest that Ate1a serves a primarily predatory function by immobilising prey, and we show this is achieved through inhibition of Shaker-type KV channels. Ate1a is encoded as a multi-domain precursor protein that yields multiple identical mature peptides, which likely evolved by multiple domain duplication events in an actinioidean ancestor. Despite this ancient evolutionary history, the PHAB-encoding gene family exhibits remarkable sequence conservation in the mature peptide domains. We demonstrate that this conservation is likely due to intra-gene concerted evolution, which has to our knowledge not previously been reported for toxin genes. We propose that the concerted evolution of toxin domains provides a hitherto unrecognised way to circumvent the effects of the costly evolutionary arms race considered to drive toxin gene evolution by ensuring efficient secretion of ecologically important predatory toxins.


Asunto(s)
Venenos de Cnidarios/química , Péptidos/química , Canales de Potasio con Entrada de Voltaje/química , Anémonas de Mar/química , Secuencia de Aminoácidos , Animales , Venenos de Cnidarios/genética , Venenos de Cnidarios/metabolismo , Evolución Molecular , Modelos Moleculares , Péptidos/genética , Péptidos/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Conformación Proteica , Pliegue de Proteína , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Transcriptoma
20.
Biomedicines ; 6(3)2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154370

RESUMEN

Spider venoms are a rich source of insecticidal peptide toxins. Their development as bioinsecticides has, however, been hampered due to concerns about potential lack of stability and oral bioactivity. We therefore systematically evaluated several synthetic strategies to increase the stability and oral potency of the potent insecticidal spider-venom peptide ω-HXTX-Hv1a (Hv1a). Selective chemical replacement of disulfide bridges with diselenide bonds and N- to C-terminal cyclization were anticipated to improve Hv1a resistance to proteolytic digestion, and thereby its activity when delivered orally. We found that native Hv1a is orally active in blowflies, but 91-fold less potent than when administered by injection. Introduction of a single diselenide bond had no effect on the susceptibility to scrambling or the oral activity of Hv1a. N- to C-terminal cyclization of the peptide backbone did not significantly improve the potency of Hv1a when injected into blowflies and it led to a significant decrease in oral activity. We show that this is likely due to a dramatically reduced rate of translocation of cyclic Hv1a across the insect midgut, highlighting the importance of testing bioavailability in addition to toxin stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...