Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Indian J Microbiol ; 64(1): 198-204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38468749

RESUMEN

The Serratia marcescens is a Gram-negative bacterium from the Enterobacteriaceae family. Recently, S. marcescens have evolved to become a versatile and opportunistic pathogen. Furthermore, this bacterium is also a multi-drug resistant pathogen exhibiting Extended-Spectrum Beta-Lactamases (ESBL) activity. This bacterium is highly associated with infections in healthcare settings and even leads to death. Hence, an advanced approach based on non-protein coding RNA (npcRNA) of S. marcescens was considered in this study to understand its regulatory roles in virulence, pathogenesis, and the differential expression of these transcripts in various growth phases of the bacterium. BLASTn search of known npcRNAs from Salmonella typhi, Escherichia coli, and Yersinia pestis against S. marcescens was performed to discover putative conserved homologous transcripts. The novelty of these putative homologous npcRNAs was verified by screening through the Rfam web tool. The target mRNA for the homologs was predicted via the TargetRNA2 webtool to understand the possible regulatory roles of these transcripts. The npcRNA homologs, which were predicted to regulate virulence target mRNA were assessed for their expression profile at different growth stages via reverse transcription PCR and the band intensity was quantitatively analysed using the Image J tool. The known npcRNA ssrS, from S. typhi showed expression in S. marcescens during three growth stages (lag, log, and stationary). Expression was observed to be high during the lag phase followed by a similarly low-level expression during the log and no expression during stationary phase. This ssrS homolog was predicted to regulate mRNA that encodes for protein FliR, which is associated with virulence. This is a preliminary study that lay the foundation for further elucidation of more virulence-associated npcRNAs that are yet to be discovered from S. marcescens, which can be useful for diagnostics and therapeutic applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01160-y.

2.
J Biomol Struct Dyn ; : 1-16, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38014451

RESUMEN

Overexpression of HDAC 2 promotes cell proliferation in ovarian cancer. HDAC 2 is involved in chromatin remodeling, transcriptional repression, and the formation of condensed chromatin structures. Targeting HDAC 2 presents a promising therapeutic approach for correcting cancer-associated epigenetic abnormalities. Consequently, HDAC 2 inhibitors have evolved as an attractive class of anti-cancer agents. This work intended to investigate the anti-cancer abilities and underlying molecular mechanisms of Rhamnetin in human epithelial ovarian carcinoma cells (SKOV3), which remain largely unexplored. We employed various in vitro methods, including MTT, apoptosis study, cell cycle analysis, fluorescence microscopy imaging, and in vitro enzymatic HDAC 2 protein inhibition, to examine the chemotherapeutic sensitivity of Rhamnetin in SKOV3 cells. Additionally, we conducted in silico studies using molecular docking, MD simulation, MM-GBSA, DFT, and pharmacokinetic analysis to investigate the binding interaction mechanism within Rhamnetin and HDAC 2, alongside the compound's prospective as a lead candidate. The in vitro assay confirmed the cytotoxic effects of Rhamnetin on SKOV3 cells, through its inhibition of HDAC 2 activity. Rhamnetin, a nutraceutical flavonoid, halted at the G1 phase of the cell cycle and triggered apoptosis in SKOV3 cells. Furthermore, computational studies provided additional evidence of its stable binding to the HDAC 2 protein's binding site cavity. Based on our findings, we conclude that Rhamnetin effectively promotes apoptosis and mitigates the proliferation of SKOV3 cells through HDAC 2 inhibition. These results highlight Rhamnetin as a potential lead compound, opening a new therapeutic strategy for human epithelial ovarian cancer.Communicated by Ramaswamy H. Sarma.

3.
Front Pharmacol ; 14: 1212376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781695

RESUMEN

Background: Excitotoxicity is a condition in which neurons are damaged/injured by the over-activation of glutamate receptors. Excitotoxins play a crucial part in the progression of several neurological diseases. Marsilea quadrifolia Linn (M. quadrifolia) is a very popular aquatic medicinal plant that has been utilised for a variety of therapeutic benefits since ancient times. Its chemical composition is diverse and includes phenolic compounds, tannins, saponins, flavonoids, steroids, terpenoids, alkaloids, carbohydrates and several others that possess antioxidant properties. Objective: The objective of the present study was to investigate the neuroprotective potential of M. quadrifolia against monosodium glutamate (MSG)-induced excitotoxicity in rats. Methods: A high-performance thin-layer chromatography (HPTLC) analysis of chloroform extract of M. quadrifolia (CEMQ) was conducted to identify the major constituents. Further, the in silico docking analysis was carried out on selected ligands. To confirm CEMQ's neuroprotective effects, the locomotor activity, non-spatial memory, and learning were assessed. Results and discussion: The present study confirmed that CMEQ contains quercetin and its derivatives in large. The in-silico findings indicated that quercetin has a better binding affinity (-7.9 kcal/mol) towards the protein target 5EWJ. Animals treated with MSG had 1) a greater reduction in the locomotor score and impairment in memory and learning 2) a greater increase in the blood levels of calcium and sodium and 3) neuronal disorganization, along with cerebral edema and neuronal degeneration in the brain tissues as compared to normal control animals. The changes were however, significantly improved in animals which received standard drug memantine (20 mg/kg) and CEMQ (200 and 400 mg/kg) as compared to the negative control. It is plausible that the changes seen with CEMQ may be attributed to the N-methyl-D-aspartate (NMDA) antagonistic properties. Conclusion: Overall, this study indicated that M. quadrifolia ameliorated MSG-induced neurotoxicity. Future investigations are required to explore the neuroprotective mechanism of M. quadrifolia and its active constituents, which will provide exciting insights in the therapeutic management of neurological disorders.

4.
Front Chem ; 11: 1218588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736256

RESUMEN

Nanobiotechnology is a popular branch of science that is gaining interest among scientists and researchers as it allows for the green manufacturing of nanoparticles by employing plants as reducing agents. This method is safe, cheap, reproducible, and eco-friendly. In this study, the therapeutic property of Piper nigrum fruit was mixed with the antibacterial activity of metallic copper to produce copper nanoparticles. The synthesis of copper nanoparticles was indicated by a color change from brown to blue. Physical characterization of Piper nigrum copper nanoparticles (PN-CuNPs) was performed using UV-vis spectroscopy, FT-IR, SEM, EDX, XRD, and Zeta analyzer. PN-CuNPs exhibited potential antioxidant, antibacterial, and cytotoxic activities. PN-CuNPs have shown concentration-dependent, enhanced free radical scavenging activity, reaching maximum values of 92%, 90%, and 86% with DPPH, H2O2, and PMA tests, respectively. The antibacterial zone of inhibition of PN-CuNPs was the highest against Staphylococcus aureus (23 mm) and the lowest against Escherichia coli (10 mm). PN-CuNPs showed 80% in vitro cytotoxicity against MCF-7 breast cancer cell lines. Furthermore, more than 50 components of Piper nigrum extract were selected and subjected to in silico molecular docking using the C-Docker protocol in the binding pockets of glutathione reductase, E. coli DNA gyrase topoisomerase II, and epidermal growth factor receptor (EGFR) tyrosine to discover their druggability. Pipercyclobutanamide A (26), pipernigramide F (32), and pipernigramide G (33) scored the highest Gibbs free energy at 50.489, 51.9306, and 58.615 kcal/mol, respectively. The ADMET/TOPKAT analysis confirmed the favorable pharmacokinetics, pharmacodynamics, and toxicity profiles of the three promising compounds. The present in silico analysis helps us to understand the possible mechanisms behind the antioxidant, antibacterial, and cytotoxic activities of CuNPs and recommends them as implicit inhibitors of selected proteins.

5.
Front Mol Biosci ; 10: 1232109, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621994

RESUMEN

Nanogels are highly recognized as adaptable drug delivery systems that significantly contribute to improving various therapies and diagnostic examinations for different human diseases. These three-dimensional, hydrophilic cross-linked polymers have the ability to absorb large amounts of water or biological fluids. Due to the growing demand for enhancing current therapies, nanogels have emerged as the next-generation drug delivery system. They effectively address the limitations of conventional drug therapy, such as poor stability, large particle size, and low drug loading efficiency. Nanogels find extensive use in the controlled delivery of therapeutic agents, reducing adverse drug effects and enabling lower therapeutic doses while maintaining enhanced efficacy and patient compliance. They are considered an innovative drug delivery system that highlights the shortcomings of traditional methods. This article covers several topics, including the involvement of nanogels in the nanomedicine sector, their advantages and limitations, ideal properties like biocompatibility, biodegradability, drug loading capacity, particle size, permeability, non-immunological response, and colloidal stability. Additionally, it provides information on nanogel classification, synthesis, drug release mechanisms, and various biological applications. The article also discusses barriers associated with brain targeting and the progress of nanogels as nanocarriers for delivering therapeutic agents to the central nervous system.

6.
Pharmaceutics ; 15(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37631280

RESUMEN

Natural polymers have attracted significant attention in drug delivery applications due to their biocompatibility, biodegradability, and versatility. However, their surface properties often limit their use as drug delivery vehicles, as they may exhibit poor wettability, weak adhesion, and inadequate drug loading and release. Plasma treatment is a promising surface modification technique that can overcome these limitations by introducing various functional groups onto the natural polymer surface, thus enhancing its physicochemical and biological properties. This review provides a critical overview of recent advances in the plasma modification of natural polymer-based drug delivery systems, with a focus on controllable plasma treatment techniques. The review covers the fundamental principles of plasma generation, process control, and characterization of plasma-treated natural polymer surfaces. It discusses the various applications of plasma-modified natural polymer-based drug delivery systems, including improved biocompatibility, controlled drug release, and targeted drug delivery. The challenges and emerging trends in the field of plasma modification of natural polymer-based drug delivery systems are also highlighted. The review concludes with a discussion of the potential of controllable plasma treatment as a versatile and effective tool for the surface functionalization of natural polymer-based drug delivery systems.

7.
Front Bioeng Biotechnol ; 11: 1222693, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545888

RESUMEN

The aim of this study was to investigate the influence of excipients on retaining the particle size of methotrexate (MTX) loaded chitosan nanocarriers (CsNP) during lyophilization, which relates to the ability to enlarge the particle size and target specific areas. The nanocarriers were prepared using the ionic gelation technique with tripolyphosphate as a crosslinker. Three lyophilized formulations were used: nanosuspension without Lyoprotectant (NF), with mannitol (NFM), and with sucrose (NFS). The lyophilized powder intended for injection (PI) was examined to assess changes in particle size, product integrity, and comparative biodistribution studies to evaluate targeting ability. After lyophilization, NFS was excluded from in-vivo studies due to the product melt-back phenomenon. The particle size of the NF lyophile significantly increased from 176 nm to 261 nm. In contrast, NFM restricted the nanocarrier size to 194 nm and exhibited excellent cake properties. FTIR, XRD, and SEM analysis revealed the transformation of mannitol into a stable ß, δ polymorphic form. Biodistribution studies showed that the nanocarriers significantly increased MTX accumulation in tumor tissue (NF = 2.04 ± 0.27; NFM = 2.73 ± 0.19) compared to the marketed PI (1.45 ± 0.25 µg), but this effect was highly dependent on the particle size. Incorporating mannitol yielded positive results in restricting particle size and favoring successful tumor targeting. This study demonstrates the potential of chitosan nanocarriers as promising candidates for targeted tumor drug delivery and cancer treatment.

8.
Front Immunol ; 14: 1216321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575261

RESUMEN

Background: Impaired wound healing is the most common and significant complication of Diabetes. While most other complications of Diabetes have better treatment options, diabetic wounds remain a burden as they can cause pain and suffering in patients. Wound closure and repair are orchestrated by a sequence of events aided by the release of pro-inflammatory cytokines, which are dysregulated in cases of Diabetes, making the wound environment unfavorable for healing and delaying the wound healing processes. This concise review provides an overview of the dysregulation of pro-inflammatory cytokines and offers insights into better therapeutic outcomes. Purpose of review: Although many therapeutic approaches have been lined up nowadays to treat Diabetes, there are no proper treatment modalities proposed yet in treating diabetic wounds due to the lack of understanding about the role of inflammatory mediators, especially Pro-inflammatory mediators- Cytokines, in the process of Wound healing which we mainly focus on this review. Recent findings: Although complications of Diabetes mellitus are most reported after years of diagnosis, the most severe critical complication is impaired Wound Healing among Diabetes patients. Even though Trauma, Peripheral Artery Disease, and Peripheral Neuropathy are the leading triggering factors for the development of ulcerations, the most significant issue contributing to the development of complicated cutaneous wounds is wound healing impairment. It may even end up with amputation. Newer therapeutic approaches such as incorporating the additives in the present dressing materials, which include antimicrobial molecules and immunomodulatory cytokines is of better therapeutic value. Summary: The adoption of these technologies and the establishment of novel therapeutic interventions is difficult since there is a gap in terms of a complete understanding of the pathophysiological mechanisms at the cellular and molecular level and the lack of data in terms of the assessment of safety and bioavailability differences in the individuals' patients. The target-specific pro-inflammatory cytokines-based therapies, either by upregulation or downregulation of them, will be helpful in the wound healing process and thereby enhances the Quality of life in patients, which is the goal of drug therapy.


Asunto(s)
Citocinas , Diabetes Mellitus , Humanos , Calidad de Vida , Cicatrización de Heridas/fisiología , Mediadores de Inflamación
9.
Front Microbiol ; 14: 1206872, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497547

RESUMEN

The Lassa virus (LASV), an RNA virus prevalent in West and Central Africa, causes severe hemorrhagic fever with a high fatality rate. However, no FDA-approved treatments or vaccines exist. Two crucial proteins, LASV glycoprotein and nucleoprotein, play vital roles in pathogenesis and are potential therapeutic targets. As effective treatments for many emerging infections remain elusive, cutting-edge drug development approaches are essential, such as identifying molecular targets, screening lead molecules, and repurposing existing drugs. Bioinformatics and computational biology expedite drug discovery pipelines, using data science to identify targets, predict structures, and model interactions. These techniques also facilitate screening leads with optimal drug-like properties, reducing time, cost, and complexities associated with traditional drug development. Researchers have employed advanced computational drug design methods such as molecular docking, pharmacokinetics, drug-likeness, and molecular dynamics simulation to investigate evodiamine derivatives as potential LASV inhibitors. The results revealed remarkable binding affinities, with many outperforming standard compounds. Additionally, molecular active simulation data suggest stability when bound to target receptors. These promising findings indicate that evodiamine derivatives may offer superior pharmacokinetics and drug-likeness properties, serving as a valuable resource for professionals developing synthetic drugs to combat the Lassa virus.

10.
Front Pharmacol ; 14: 1189957, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521470

RESUMEN

Huntington's disease (HD), a neurodegenerative disease, normally starts in the prime of adult life, followed by a gradual occurrence of psychiatric disturbances, cognitive and motor dysfunction. The daily performances and life quality of HD patients have been severely interfered by these clinical signs and symptoms until the last stage of neuronal cell death. To the best of our knowledge, no treatment is available to completely mitigate the progression of HD. Mangiferin, a naturally occurring potent glucoxilxanthone, is mainly isolated from the Mangifera indica plant. Considerable studies have confirmed the medicinal benefits of mangiferin against memory and cognitive impairment in neurodegenerative experimental models such as Alzheimer's and Parkinson's diseases. Therefore, this study aims to evaluate the neuroprotective effect of mangiferin against 3-nitropropionic acid (3-NP) induced HD in rat models. Adult Wistar rats (n = 32) were randomly allocated equally into four groups of eight rats each: normal control (Group I), disease control (Group II) and two treatment groups (Group III and Group IV). Treatment with mangiferin (10 and 20 mg/kg, p. o.) was given for 14 days, whereas 3-NP (15 mg/kg, i. p.) was given for 7 days to induce HD-like symptoms in rats. Rats were assessed for cognitive functions and motor coordination using open field test (OFT), novel object recognition (NOR) test, neurological assessment, rotarod and grip strength tests. Biochemical parameters such as oxidative stress markers and pro-inflammatory markers in brain hippocampus, striatum and cortex regions were evaluated. Histopathological study on brain tissue was also conducted using hematoxylin and eosin (H&E) staining. 3-NP triggered anxiety, decreased recognition memory, reduced locomotor activity, lower neurological scoring, declined rotarod performance and grip strength were alleviated by mangiferin treatment. Further, a significant depletion in brain malondialdehyde (MDA) level, an increase in reduced glutathione (GSH) level, succinate dehydrogenase (SDH), superoxide dismutase (SOD) and catalase (CAT) activities, and a decrease in tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) levels were observed in mangiferin treated groups. Mangiferin also mitigated 3-NP induced histopathological alteration in the brain hippocampus, striatum and cortex sections. It could be inferred that mangiferin protects the brain against oxidative damage and neuroinflammation, notably via antioxidant and anti-inflammatory activities. Mangiferin, which has a good safety profile, may be an alternate treatment option for treating HD and other neurodegenerative disorders. The results of the current research of mangiferin will open up new avenues for the development of safe and effective therapeutic agents in diminishing HD.

11.
Microorganisms ; 11(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110423

RESUMEN

Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.

12.
Polymers (Basel) ; 15(6)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36987305

RESUMEN

Biological macromolecules like polysaccharides/proteins/glycoproteins have been widely used in the field of tissue engineering due to their ability to mimic the extracellular matrix of tissue. In addition to this, these macromolecules are found to have higher biocompatibility and no/lesser toxicity when compared to synthetic polymers. In recent years, scaffolds made up of proteins, polysaccharides, or glycoproteins have been highly used due to their tensile strength, biodegradability, and flexibility. This review is about the fabrication methods and applications of scaffolds made using various biological macromolecules, including polysaccharides like chitosan, agarose, cellulose, and dextran and proteins like soy proteins, zein proteins, etc. Biopolymer-based nanocomposite production and its application and limitations are also discussed in this review. This review also emphasizes the importance of using natural polymers rather than synthetic ones for developing scaffolds, as natural polymers have unique properties, like high biocompatibility, biodegradability, accessibility, stability, absence of toxicity, and low cost.

13.
Front Pharmacol ; 14: 1096905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817128

RESUMEN

Background: Dodonaea viscosa Jacq. (D. viscosa) belongs to the family of Sapindaceae, commonly known as "Sinatha," and is used as a traditional medicine for treating wounds due to its high flavonoids content. However, to date there is no experimental evidence on its flavonoid-rich fraction of D. viscosa formulation as an agent for healing wounds. Objective: The present study aimed to evaluate the wound healing effect of ethyl acetate fraction of D. viscosa leaves on dermal wounds. Methods: The ethyl acetate fraction was produced from a water-ethanol extract of D. viscosa leaves and was quantitatively evaluated using the HPLC technique. The in-vivo wound healing ability of the ethyl acetate fraction of D. viscosa ointment (DVFO, 2.5%w/w and 5%w/w) was investigated in Sprague-Dawley rats utilizing an incision and excision paradigm with povidone-iodine ointment (5% w/w) as a control. The percentage of wound closure, hydroxyproline and hexosamine concentrations, tensile strength and epithelialization duration were measured. Subsequently, histopathology analysis of skin samples as well as western blots were performed for collagen type 3 (COL3A1), basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). Results: The ethyl acetate fraction of D. viscosa revealed flavonoids with high concentrations of quercetin (6.46% w/w) and kaempferol (0.132% w/w). Compared to the control group, the DVFO (2.5% and 5.0% w/w) significantly accelerated wound healing in both models, as demonstrated by quicker wound contraction, epithelialization, elevated hydroxyproline levels and increased tensile strength. Histopathological investigations also revealed that DVFO treatment improved wound healing by re-epithelialization, collagen formation and vascularization of damaged skin samples. Western blot analysis further demonstrated an up-regulation of COL3A, vascular endothelial growth factor and bFGF protein in wound granulation tissue of the DVFO-treated group (p < 0.01). Conclusion: It is concluded that flavonoid-rich D. viscosa ethyl acetate fraction promotes wound healing by up-regulating the expressions of COL3A, VEGF and bFGF protein in wound granulation tissue. However, extensive clinical and pre-clinical research on the flavonoid-rich fraction of D. viscosa is needed to determine its significant impact in the healing of human wounds.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38391359

RESUMEN

ABSTRACT: Kodamaea ohmeri is a rare opportunistic pathogen belonging to Saccharomycetes family. This yeast was also formerly known as Yamadazyma ohmeri or Pichia ohmeri. This opportunistic pathogen causes illness that typically affects people with impaired immune system. In this report, we discuss a fatal case involving a woman in her late 30s who was admitted to the hospital on the sixth day of her sickness after being given a COVID-19 Category 5A diagnosis. For COVID-19, she received subcutaneous heparin, cefuroxime, and intravenous corticosteroids. She was diagnosed with secondary bacterial and fungal infections in the ICU. Multiple antibiotics and antifungal were given to treat bacterial and fungal infections. An unusual fungus, Kodamaea ohmeri, was isolated from the clinical sample. On day 36, she succumbed to her infection in the ICU. The cause of death was multidrug-resistant sepsis with multiple organ failures due to COVID-19 infection, worsened by an embolism and trachea damage during a tracheostomy. To effectively manage K. ohmeri, clinicians and microbiologists must identify and be aware of this emerging human opportunistic pathogen, which can co-infect debilitated patients such as COVID-19 patients, for effective management.

15.
Front Nutr ; 9: 987552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386935

RESUMEN

Background: Solanum torvum Swartz, a medicinal plant belonging to the family Solanaceae, is an important medicinal plant widely distributed throughout the world and used as medicine to treat diabetes, hypertension, tooth decay, and reproductive problems in traditional systems of medicine around the world including Malaysia. The objective of this study was to investigate hypoglycemic, antilipidemic, and hepatoprotective activities, histopathology of the pancreas, and specific glucose regulating gene expression of the ethanolic extract of S. torvum fruit in streptozotocin-induced diabetic Sprague-Dawley rats. Materials and methods: Acute toxicity study was done according to OECD-423 guidelines. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg) in male Sprague-Dawley rats. Experimental diabetic rats were divided into six different groups; normal, diabetic control, and glibenclamide at 6 mg/kg body weight, and the other three groups of animals were treated with oral administration of ethanolic extract of S. torvum fruit at 120, 160, and 200 mg/kg for 28 days. The effect of ethanolic extract of S. torvum fruit on body weight, blood glucose, lipid profile, liver enzymes, histopathology of pancreas, and gene expression of glucose transporter 2 (slc2a2), and phosphoenolpyruvate carboxykinase (PCK1) was determined by RT-PCR. Results: Acute toxicity studies showed LD50 of ethanolic extract of S. torvum fruit to be at the dose of 1600 mg/kg body weight. Blood glucose, total cholesterol, triglycerides, low-density lipoproteins, very low-density lipoproteins, serum alanine aminotransferase, and aspartate aminotransferase were significantly reduced, whereas high-density lipoproteins were significantly increased in S. torvum fruit (200 mg/kg)-treated rats. Histopathological study of the pancreas showed an increase in number, size, and regeneration of ß-cell of islets of Langerhans. Gene expression studies revealed the lower expression of slc2a2 and PCK1 in treated animals when compared to diabetic control. Conclusion: Ethanolic extract of S. torvum fruits showed hypoglycemic, hypolipidemic, and hepatoprotective activity in streptozocin-induced diabetic rats. Histopathological studies revealed regeneration of ß cells of islets of Langerhans. Gene expression studies indicated lower expression of slc2a2 and PCK1 in treated animals when compared to diabetic control, indicating that the treated animals prefer the gluconeogenesis pathway.

16.
Front Chem ; 10: 984218, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212054

RESUMEN

Nanoscale iron oxide-based nanostructures are among the most apparent metallic nanostructures, having great potential and attracting substantial interest due to their unique superparamagnetic properties. The green production of nanostructures has received abundant attention and been actively explored recently because of their various beneficial applications and properties across different fields. The biosynthesis of the nanostructure using green technology by the manipulation of a wide variety of plant materials has been the focus because it is biocompatible, non-toxic, and does not include any harmful substances. Biological methods using agro-wastes under green synthesis have been found to be simple, environmentally friendly, and cost-effective in generating iron oxide-based nanostructures instead of physical and chemical methods. Polysaccharides and biomolecules in agro-wastes could be utilized as stabilizers and reducing agents for the green production of nanostructured iron oxide towards a wide range of benefits. This review discusses the green production of iron oxide-based nanostructures through a simple and eco-friendly method and its potential applications in medical and sustainable agro-environments. This overview provides different ways to expand the usage of iron oxide nanomaterials in different sectors. Further, provided the options to select an appropriate plant towards the specific applications in agriculture and other sectors with the recommended future directions.

17.
Sci Rep ; 12(1): 12621, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871246

RESUMEN

Nonprotein coding RNA (npcRNA) is a transcribed gene sequence that is not able to translate into protein, yet it executes a specific function in modulation and regulation mechanisms. As npcRNA is highly resistant to the mutation, the Sau-02 npcRNA gene and its probe oligonucleotide, which are specifically present in Staphylococcus aureus and in methicillin-resistant S. aureus only, used to develop a highly specific and sensitive colorimetric assay on unmodified gold nanoparticles (AuNPs). Hybridization between the npcRNA Sau-02 gene sequences was detected through noncrosslinking AuNP aggregation in salt solution in the presence of probe-target gene sequences. AuNPs of 10 and 15 nm in sizes with monovalent ion salt (NaCl) solution were optimized as the ideal tool for investigating the stability of AuNPs upon the addition of gene sequences. The state dispersed and aggregated forms of 10 nm AuNPs with the presented colorimetric assay were justified through field emission scanning electron microscopy and atomic force microscopy. The particle distribution of two different AuNP states was evaluated through particle distribution analysis. The lowest detection amount of S. aureus npcRNA from the colorimetric assay performed was 6 pg/µL, as the color of AuNPs turned blue with the presence of probe oligonucleotides and target gene sequences.


Asunto(s)
Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Secuencia de Bases , Colorimetría , Oro , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Oligonucleótidos , ARN no Traducido , Infecciones Estafilocócicas/genética , Staphylococcus aureus/genética
18.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742906

RESUMEN

Salmonella enterica serovar Typhi (S. typhi) is an intracellular pathogen belonging to the Enterobacteriaceae family, where biofilm (aggregation and colonization of cells) formation is one of their advantageous traits. Salmonella typhi is the causative agent of typhoid fever in the human body and is exceptionally host specific. It is transmitted through the fecal-oral route by consuming contaminated food or water. This subspecies is quite intelligent to evade the innate detection and immune response of the host body, leading to systemic dissemination. Consequently, during the period of illness, the gallbladder becomes a harbor and may develop antibiotic resistance. Afterwards, they start contributing to the continuous damage of epithelium cells and make the host asymptomatic and potential carriers of this pathogen for an extended period. Statistically, almost 5% of infected people with Salmonella typhi become chronic carriers and are ready to contribute to future transmission by biofilm formation. Biofilm development is already recognized to link with pathogenicity and plays a crucial role in persistency within the human body. This review seeks to discuss some of the crucial factors related to biofilm development and its mechanism of interaction causing pathogenicity. Understanding the connections between these things will open up a new avenue for finding therapeutic approaches to combat pathogenicity.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Biopelículas , Vesícula Biliar , Humanos , Virulencia
19.
Front Physiol ; 13: 870399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620596

RESUMEN

Objective: Spondias mombin is a plant that reported to have anticonvulsant, antimicrobial, antioxidant, antiulcer, antiasthmatic, and wound healing activities. Diabetes dyslipidemic effect of Spondias mombin leaves is not clear. Hence, current study planned to evaluate the antidiabetic and antihyperlipidemic effects of methanolic extract of leaves of Spondias mombin (MESM) in streptozotocin (STZ) induced diabetic rats. Methods: Phytochemicals were determined by standard method and antioxidant activity was determined by DPPH free radical scavenging and FRAP assay. Diabetes was induced by injecting a single dose of STZ (55 mg/kg) into female sprague dawley rats. After 3 days of induction of diabetes, the diabetic animals were treated for 28 days with MESM (125, 250, and 500 mg/kg) and glibenclamide (20 mg/kg) orally. The body weight of rats and blood glucose levels were monitored at regular intervals during the experiment. At the end of study, blood sample was collected from all the animals and subjected to biochemical, lipid profile, and they were sacrificed and their organs such as pancreas, liver and kidney were used for histopathological analysis. Results: Quantitative analysis of MESM showed the presence of anthraquinone, tannins, saponins, steroid, phenols, flavonoids, alkaloids, and reducing sugars. Reduction in body weight and elevated blood glucose were observed in diabetic rats. Treatment with MESM in a concentration of 125, 250, and 500 mg/kg significantly reversed the elevated levels of blood glucose, reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, urea, creatinine, total serum cholesterol (TC), serum triglyceride (TG), low-density lipoprotein (LDL), Very low-density lipoprotein (VLDL), and increased plasma insulin, total protein, albumin, globulin, A/G ratio, and high-density lipoprotein (HDL). Conclusion: MESM exhibited a significant antidiabetic and antihyperlipidemic activities against STZ-induced diabetes in rats.

20.
Materials (Basel) ; 15(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35591502

RESUMEN

Periimplantitis due to pathogenic bacteria is considered as a major cause for dental implants failures. Biogenic zinc oxide nanoparticles (ZnPs) are known to inhibit periimplantitis triggering pathogens. The current investigation intended to perform ZnPs biosynthesis and evaluation against periimplantitis triggering bacteria. The current study involved ZnPs biosynthesis using Andrographis paniculata leaves aqueous extract (APLAE), followed by optimization, stability, characterization, and in vitro evaluation against periimplantitis triggering bacteria. The experimental results indicated the success of ZnPs biosynthesis based on the optimization of zinc acetate (1.5 g), plant extract (5 mL), pH 12, and temperature (25 °C), and using the stability study (absorbance between 365-370 nm) and characterization data exhibiting broad and shifted bands (in FTIR spectrum), the size was found to be below 98.61 nm (determined by FESEM and XRD spectra) and 71.54% zinc was observed in the EDX spectrum. Biogenic ZnPs exhibited a high inhibitory activity against periimplantitis-triggering pathogens (E. coli and S. aureus). Based on the experimental results, the present study concludes that biogenic ZnPs possess a high inhibitory potential against periimplantitis-triggering bacteria, and it is established that the biosynthesis of ZnPs using APLAE is a useful method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...